Metamath Proof Explorer


Theorem abrexdom

Description: An indexed set is dominated by the indexing set. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypothesis abrexdom.1 yA*xφ
Assertion abrexdom AVx|yAφA

Proof

Step Hyp Ref Expression
1 abrexdom.1 yA*xφ
2 df-rex yAφyyAφ
3 2 abbii x|yAφ=x|yyAφ
4 rnopab ranyx|yAφ=x|yyAφ
5 3 4 eqtr4i x|yAφ=ranyx|yAφ
6 dmopabss domyx|yAφA
7 ssexg domyx|yAφAAVdomyx|yAφV
8 6 7 mpan AVdomyx|yAφV
9 funopab Funyx|yAφy*xyAφ
10 moanimv *xyAφyA*xφ
11 1 10 mpbir *xyAφ
12 9 11 mpgbir Funyx|yAφ
13 12 a1i AVFunyx|yAφ
14 funfn Funyx|yAφyx|yAφFndomyx|yAφ
15 13 14 sylib AVyx|yAφFndomyx|yAφ
16 fnrndomg domyx|yAφVyx|yAφFndomyx|yAφranyx|yAφdomyx|yAφ
17 8 15 16 sylc AVranyx|yAφdomyx|yAφ
18 ssdomg AVdomyx|yAφAdomyx|yAφA
19 6 18 mpi AVdomyx|yAφA
20 domtr ranyx|yAφdomyx|yAφdomyx|yAφAranyx|yAφA
21 17 19 20 syl2anc AVranyx|yAφA
22 5 21 eqbrtrid AVx|yAφA