| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abs2dif |  | 
						
							| 2 | 1 | ancoms |  | 
						
							| 3 |  | abscl |  | 
						
							| 4 | 3 | recnd |  | 
						
							| 5 |  | abscl |  | 
						
							| 6 | 5 | recnd |  | 
						
							| 7 |  | negsubdi2 |  | 
						
							| 8 | 4 6 7 | syl2an |  | 
						
							| 9 |  | abssub |  | 
						
							| 10 | 2 8 9 | 3brtr4d |  | 
						
							| 11 |  | abs2dif |  | 
						
							| 12 |  | resubcl |  | 
						
							| 13 | 3 5 12 | syl2an |  | 
						
							| 14 |  | subcl |  | 
						
							| 15 |  | abscl |  | 
						
							| 16 | 14 15 | syl |  | 
						
							| 17 |  | absle |  | 
						
							| 18 | 13 16 17 | syl2anc |  | 
						
							| 19 |  | lenegcon1 |  | 
						
							| 20 | 13 16 19 | syl2anc |  | 
						
							| 21 | 20 | anbi1d |  | 
						
							| 22 | 18 21 | bitr4d |  | 
						
							| 23 | 10 11 22 | mpbir2and |  |