Metamath Proof Explorer


Theorem abslogimle

Description: The imaginary part of the logarithm function has absolute value less than pi. (Contributed by Mario Carneiro, 3-Jul-2017)

Ref Expression
Assertion abslogimle AA0logAπ

Proof

Step Hyp Ref Expression
1 pire π
2 1 a1i AA0π
3 2 renegcld AA0π
4 logcl AA0logA
5 4 imcld AA0logA
6 logimcl AA0π<logAlogAπ
7 6 simpld AA0π<logA
8 3 5 7 ltled AA0πlogA
9 6 simprd AA0logAπ
10 5 2 absled AA0logAππlogAlogAπ
11 8 9 10 mpbir2and AA0logAπ