| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll |
|
| 2 |
1
|
renegcld |
|
| 3 |
1
|
recnd |
|
| 4 |
|
abscl |
|
| 5 |
3 4
|
syl |
|
| 6 |
|
simplr |
|
| 7 |
|
leabs |
|
| 8 |
2 7
|
syl |
|
| 9 |
|
absneg |
|
| 10 |
3 9
|
syl |
|
| 11 |
8 10
|
breqtrd |
|
| 12 |
|
simpr |
|
| 13 |
2 5 6 11 12
|
lelttrd |
|
| 14 |
|
leabs |
|
| 15 |
14
|
ad2antrr |
|
| 16 |
1 5 6 15 12
|
lelttrd |
|
| 17 |
13 16
|
jca |
|
| 18 |
17
|
ex |
|
| 19 |
|
absor |
|
| 20 |
19
|
adantr |
|
| 21 |
|
breq1 |
|
| 22 |
21
|
biimprd |
|
| 23 |
|
breq1 |
|
| 24 |
23
|
biimprd |
|
| 25 |
22 24
|
jaoa |
|
| 26 |
25
|
ancomsd |
|
| 27 |
20 26
|
syl |
|
| 28 |
18 27
|
impbid |
|
| 29 |
|
ltnegcon1 |
|
| 30 |
29
|
anbi1d |
|
| 31 |
28 30
|
bitrd |
|