Metamath Proof Explorer


Theorem abvfval

Description: Value of the set of absolute values. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abvfval.a A=AbsValR
abvfval.b B=BaseR
abvfval.p +˙=+R
abvfval.t ·˙=R
abvfval.z 0˙=0R
Assertion abvfval RRingA=f0+∞B|xBfx=0x=0˙yBfx·˙y=fxfyfx+˙yfx+fy

Proof

Step Hyp Ref Expression
1 abvfval.a A=AbsValR
2 abvfval.b B=BaseR
3 abvfval.p +˙=+R
4 abvfval.t ·˙=R
5 abvfval.z 0˙=0R
6 fveq2 r=RBaser=BaseR
7 6 2 eqtr4di r=RBaser=B
8 7 oveq2d r=R0+∞Baser=0+∞B
9 fveq2 r=R0r=0R
10 9 5 eqtr4di r=R0r=0˙
11 10 eqeq2d r=Rx=0rx=0˙
12 11 bibi2d r=Rfx=0x=0rfx=0x=0˙
13 fveq2 r=Rr=R
14 13 4 eqtr4di r=Rr=·˙
15 14 oveqd r=Rxry=x·˙y
16 15 fveqeq2d r=Rfxry=fxfyfx·˙y=fxfy
17 fveq2 r=R+r=+R
18 17 3 eqtr4di r=R+r=+˙
19 18 oveqd r=Rx+ry=x+˙y
20 19 fveq2d r=Rfx+ry=fx+˙y
21 20 breq1d r=Rfx+ryfx+fyfx+˙yfx+fy
22 16 21 anbi12d r=Rfxry=fxfyfx+ryfx+fyfx·˙y=fxfyfx+˙yfx+fy
23 7 22 raleqbidv r=RyBaserfxry=fxfyfx+ryfx+fyyBfx·˙y=fxfyfx+˙yfx+fy
24 12 23 anbi12d r=Rfx=0x=0ryBaserfxry=fxfyfx+ryfx+fyfx=0x=0˙yBfx·˙y=fxfyfx+˙yfx+fy
25 7 24 raleqbidv r=RxBaserfx=0x=0ryBaserfxry=fxfyfx+ryfx+fyxBfx=0x=0˙yBfx·˙y=fxfyfx+˙yfx+fy
26 8 25 rabeqbidv r=Rf0+∞Baser|xBaserfx=0x=0ryBaserfxry=fxfyfx+ryfx+fy=f0+∞B|xBfx=0x=0˙yBfx·˙y=fxfyfx+˙yfx+fy
27 df-abv AbsVal=rRingf0+∞Baser|xBaserfx=0x=0ryBaserfxry=fxfyfx+ryfx+fy
28 ovex 0+∞BV
29 28 rabex f0+∞B|xBfx=0x=0˙yBfx·˙y=fxfyfx+˙yfx+fyV
30 26 27 29 fvmpt RRingAbsValR=f0+∞B|xBfx=0x=0˙yBfx·˙y=fxfyfx+˙yfx+fy
31 1 30 eqtrid RRingA=f0+∞B|xBfx=0x=0˙yBfx·˙y=fxfyfx+˙yfx+fy