Metamath Proof Explorer


Theorem abvmul

Description: An absolute value distributes under multiplication. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abvf.a A=AbsValR
abvf.b B=BaseR
abvmul.t ·˙=R
Assertion abvmul FAXBYBFX·˙Y=FXFY

Proof

Step Hyp Ref Expression
1 abvf.a A=AbsValR
2 abvf.b B=BaseR
3 abvmul.t ·˙=R
4 1 abvrcl FARRing
5 eqid +R=+R
6 eqid 0R=0R
7 1 2 5 3 6 isabv RRingFAF:B0+∞xBFx=0x=0RyBFx·˙y=FxFyFx+RyFx+Fy
8 4 7 syl FAFAF:B0+∞xBFx=0x=0RyBFx·˙y=FxFyFx+RyFx+Fy
9 8 ibi FAF:B0+∞xBFx=0x=0RyBFx·˙y=FxFyFx+RyFx+Fy
10 simpl Fx·˙y=FxFyFx+RyFx+FyFx·˙y=FxFy
11 10 ralimi yBFx·˙y=FxFyFx+RyFx+FyyBFx·˙y=FxFy
12 11 adantl Fx=0x=0RyBFx·˙y=FxFyFx+RyFx+FyyBFx·˙y=FxFy
13 12 ralimi xBFx=0x=0RyBFx·˙y=FxFyFx+RyFx+FyxByBFx·˙y=FxFy
14 9 13 simpl2im FAxByBFx·˙y=FxFy
15 fvoveq1 x=XFx·˙y=FX·˙y
16 fveq2 x=XFx=FX
17 16 oveq1d x=XFxFy=FXFy
18 15 17 eqeq12d x=XFx·˙y=FxFyFX·˙y=FXFy
19 oveq2 y=YX·˙y=X·˙Y
20 19 fveq2d y=YFX·˙y=FX·˙Y
21 fveq2 y=YFy=FY
22 21 oveq2d y=YFXFy=FXFY
23 20 22 eqeq12d y=YFX·˙y=FXFyFX·˙Y=FXFY
24 18 23 rspc2v XBYBxByBFx·˙y=FxFyFX·˙Y=FXFY
25 14 24 syl5com FAXBYBFX·˙Y=FXFY
26 25 3impib FAXBYBFX·˙Y=FXFY