| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abv0.a |
|
| 2 |
|
abvneg.b |
|
| 3 |
|
abvrec.z |
|
| 4 |
|
abvrec.p |
|
| 5 |
|
simplr |
|
| 6 |
|
simprl |
|
| 7 |
1 2
|
abvcl |
|
| 8 |
5 6 7
|
syl2anc |
|
| 9 |
8
|
recnd |
|
| 10 |
|
simpll |
|
| 11 |
|
simprr |
|
| 12 |
2 3 4
|
drnginvrcl |
|
| 13 |
10 6 11 12
|
syl3anc |
|
| 14 |
1 2
|
abvcl |
|
| 15 |
5 13 14
|
syl2anc |
|
| 16 |
15
|
recnd |
|
| 17 |
1 2 3
|
abvne0 |
|
| 18 |
5 6 11 17
|
syl3anc |
|
| 19 |
|
eqid |
|
| 20 |
|
eqid |
|
| 21 |
2 3 19 20 4
|
drnginvrr |
|
| 22 |
10 6 11 21
|
syl3anc |
|
| 23 |
22
|
fveq2d |
|
| 24 |
1 2 19
|
abvmul |
|
| 25 |
5 6 13 24
|
syl3anc |
|
| 26 |
1 20
|
abv1 |
|
| 27 |
26
|
adantr |
|
| 28 |
23 25 27
|
3eqtr3d |
|
| 29 |
9 16 18 28
|
mvllmuld |
|