Metamath Proof Explorer


Theorem acnnum

Description: A set X which has choice sequences on it of length ~P X is well-orderable (and hence has choice sequences of every length). (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion acnnum XAC_𝒫XXdomcard

Proof

Step Hyp Ref Expression
1 pwexg XAC_𝒫X𝒫XV
2 difss 𝒫X𝒫X
3 ssdomg 𝒫XV𝒫X𝒫X𝒫X𝒫X
4 1 2 3 mpisyl XAC_𝒫X𝒫X𝒫X
5 acndom 𝒫X𝒫XXAC_𝒫XXAC_𝒫X
6 4 5 mpcom XAC_𝒫XXAC_𝒫X
7 eldifsn x𝒫Xx𝒫Xx
8 elpwi x𝒫XxX
9 8 anim1i x𝒫XxxXx
10 7 9 sylbi x𝒫XxXx
11 10 rgen x𝒫XxXx
12 acni2 XAC_𝒫Xx𝒫XxXxff:𝒫XXx𝒫Xfxx
13 6 11 12 sylancl XAC_𝒫Xff:𝒫XXx𝒫Xfxx
14 simpr f:𝒫XXx𝒫Xfxxx𝒫Xfxx
15 7 imbi1i x𝒫Xfxxx𝒫Xxfxx
16 impexp x𝒫Xxfxxx𝒫Xxfxx
17 15 16 bitri x𝒫Xfxxx𝒫Xxfxx
18 17 ralbii2 x𝒫Xfxxx𝒫Xxfxx
19 14 18 sylib f:𝒫XXx𝒫Xfxxx𝒫Xxfxx
20 19 eximi ff:𝒫XXx𝒫Xfxxfx𝒫Xxfxx
21 13 20 syl XAC_𝒫Xfx𝒫Xxfxx
22 dfac8a XAC_𝒫Xfx𝒫XxfxxXdomcard
23 21 22 mpd XAC_𝒫XXdomcard
24 pwexg Xdomcard𝒫XV
25 numacn 𝒫XVXdomcardXAC_𝒫X
26 24 25 mpcom XdomcardXAC_𝒫X
27 23 26 impbii XAC_𝒫XXdomcard