Metamath Proof Explorer


Theorem acos1half

Description: The arccosine of 1 / 2 is _pi / 3 . (Contributed by SN, 31-Aug-2024)

Ref Expression
Assertion acos1half arccos12=π3

Proof

Step Hyp Ref Expression
1 sincos3rdpi sinπ3=32cosπ3=12
2 1 simpri cosπ3=12
3 2 fveq2i arccoscosπ3=arccos12
4 pire π
5 3re 3
6 3ne0 30
7 4 5 6 redivcli π3
8 7 recni π3
9 rere π3π3=π3
10 7 9 ax-mp π3=π3
11 7 rexri π3*
12 pipos 0<π
13 3pos 0<3
14 4 5 12 13 divgt0ii 0<π3
15 picn π
16 4 12 gt0ne0ii π0
17 15 16 dividi ππ=1
18 1lt3 1<3
19 17 18 eqbrtri ππ<3
20 4 5 4 13 12 ltdiv23ii π3<πππ<3
21 19 20 mpbir π3<π
22 0xr 0*
23 4 rexri π*
24 elioo1 0*π*π30ππ3*0<π3π3<π
25 22 23 24 mp2an π30ππ3*0<π3π3<π
26 11 14 21 25 mpbir3an π30π
27 10 26 eqeltri π30π
28 acoscos π3π30πarccoscosπ3=π3
29 8 27 28 mp2an arccoscosπ3=π3
30 3 29 eqtr3i arccos12=π3