Description: In an algebraic closure system, closure commutes with directed unions. (Contributed by Stefan O'Rear, 2-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | acsdrscl.f | |
|
Assertion | acsdrscl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acsdrscl.f | |
|
2 | fveq2 | |
|
3 | 2 | eleq1d | |
4 | unieq | |
|
5 | 4 | fveq2d | |
6 | imaeq2 | |
|
7 | 6 | unieqd | |
8 | 5 7 | eqeq12d | |
9 | 3 8 | imbi12d | |
10 | isacs3lem | |
|
11 | 1 | isacs4lem | |
12 | 10 11 | syl | |
13 | 12 | simprd | |
14 | 13 | adantr | |
15 | elfvdm | |
|
16 | pwexg | |
|
17 | elpw2g | |
|
18 | 15 16 17 | 3syl | |
19 | 18 | biimpar | |
20 | 9 14 19 | rspcdva | |
21 | 20 | 3impia | |