Description: Lemma to prove downward closure in positive real addition. Part of proof of Proposition 9-3.5 of Gleason p. 123. (Contributed by NM, 13-Mar-1996) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | addclprlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprnq | |
|
2 | ltrnq | |
|
3 | ltmnq | |
|
4 | ovex | |
|
5 | ovex | |
|
6 | ltmnq | |
|
7 | vex | |
|
8 | mulcomnq | |
|
9 | 4 5 6 7 8 | caovord2 | |
10 | 3 9 | sylan9bbr | |
11 | 2 10 | bitrid | |
12 | recidnq | |
|
13 | 12 | oveq1d | |
14 | mulcomnq | |
|
15 | mulidnq | |
|
16 | 14 15 | eqtrid | |
17 | 13 16 | sylan9eqr | |
18 | 17 | breq2d | |
19 | 11 18 | bitrd | |
20 | 1 19 | sylan | |
21 | prcdnq | |
|
22 | 21 | adantr | |
23 | 20 22 | sylbid | |