Metamath Proof Explorer


Theorem addclprlem1

Description: Lemma to prove downward closure in positive real addition. Part of proof of Proposition 9-3.5 of Gleason p. 123. (Contributed by NM, 13-Mar-1996) (New usage is discouraged.)

Ref Expression
Assertion addclprlem1 A𝑷gAx𝑸x<𝑸g+𝑸hx𝑸*𝑸g+𝑸h𝑸gA

Proof

Step Hyp Ref Expression
1 elprnq A𝑷gAg𝑸
2 ltrnq x<𝑸g+𝑸h*𝑸g+𝑸h<𝑸*𝑸x
3 ltmnq x𝑸*𝑸g+𝑸h<𝑸*𝑸xx𝑸*𝑸g+𝑸h<𝑸x𝑸*𝑸x
4 ovex x𝑸*𝑸g+𝑸hV
5 ovex x𝑸*𝑸xV
6 ltmnq w𝑸y<𝑸zw𝑸y<𝑸w𝑸z
7 vex gV
8 mulcomnq y𝑸z=z𝑸y
9 4 5 6 7 8 caovord2 g𝑸x𝑸*𝑸g+𝑸h<𝑸x𝑸*𝑸xx𝑸*𝑸g+𝑸h𝑸g<𝑸x𝑸*𝑸x𝑸g
10 3 9 sylan9bbr g𝑸x𝑸*𝑸g+𝑸h<𝑸*𝑸xx𝑸*𝑸g+𝑸h𝑸g<𝑸x𝑸*𝑸x𝑸g
11 2 10 bitrid g𝑸x𝑸x<𝑸g+𝑸hx𝑸*𝑸g+𝑸h𝑸g<𝑸x𝑸*𝑸x𝑸g
12 recidnq x𝑸x𝑸*𝑸x=1𝑸
13 12 oveq1d x𝑸x𝑸*𝑸x𝑸g=1𝑸𝑸g
14 mulcomnq 1𝑸𝑸g=g𝑸1𝑸
15 mulidnq g𝑸g𝑸1𝑸=g
16 14 15 eqtrid g𝑸1𝑸𝑸g=g
17 13 16 sylan9eqr g𝑸x𝑸x𝑸*𝑸x𝑸g=g
18 17 breq2d g𝑸x𝑸x𝑸*𝑸g+𝑸h𝑸g<𝑸x𝑸*𝑸x𝑸gx𝑸*𝑸g+𝑸h𝑸g<𝑸g
19 11 18 bitrd g𝑸x𝑸x<𝑸g+𝑸hx𝑸*𝑸g+𝑸h𝑸g<𝑸g
20 1 19 sylan A𝑷gAx𝑸x<𝑸g+𝑸hx𝑸*𝑸g+𝑸h𝑸g<𝑸g
21 prcdnq A𝑷gAx𝑸*𝑸g+𝑸h𝑸g<𝑸gx𝑸*𝑸g+𝑸h𝑸gA
22 21 adantr A𝑷gAx𝑸x𝑸*𝑸g+𝑸h𝑸g<𝑸gx𝑸*𝑸g+𝑸h𝑸gA
23 20 22 sylbid A𝑷gAx𝑸x<𝑸g+𝑸hx𝑸*𝑸g+𝑸h𝑸gA