Metamath Proof Explorer


Theorem addclsr

Description: Closure of addition on signed reals. (Contributed by NM, 25-Jul-1995) (New usage is discouraged.)

Ref Expression
Assertion addclsr A𝑹B𝑹A+𝑹B𝑹

Proof

Step Hyp Ref Expression
1 df-nr 𝑹=𝑷×𝑷/~𝑹
2 oveq1 xy~𝑹=Axy~𝑹+𝑹zw~𝑹=A+𝑹zw~𝑹
3 2 eleq1d xy~𝑹=Axy~𝑹+𝑹zw~𝑹𝑷×𝑷/~𝑹A+𝑹zw~𝑹𝑷×𝑷/~𝑹
4 oveq2 zw~𝑹=BA+𝑹zw~𝑹=A+𝑹B
5 4 eleq1d zw~𝑹=BA+𝑹zw~𝑹𝑷×𝑷/~𝑹A+𝑹B𝑷×𝑷/~𝑹
6 addsrpr x𝑷y𝑷z𝑷w𝑷xy~𝑹+𝑹zw~𝑹=x+𝑷zy+𝑷w~𝑹
7 addclpr x𝑷z𝑷x+𝑷z𝑷
8 addclpr y𝑷w𝑷y+𝑷w𝑷
9 7 8 anim12i x𝑷z𝑷y𝑷w𝑷x+𝑷z𝑷y+𝑷w𝑷
10 9 an4s x𝑷y𝑷z𝑷w𝑷x+𝑷z𝑷y+𝑷w𝑷
11 opelxpi x+𝑷z𝑷y+𝑷w𝑷x+𝑷zy+𝑷w𝑷×𝑷
12 enrex ~𝑹V
13 12 ecelqsi x+𝑷zy+𝑷w𝑷×𝑷x+𝑷zy+𝑷w~𝑹𝑷×𝑷/~𝑹
14 10 11 13 3syl x𝑷y𝑷z𝑷w𝑷x+𝑷zy+𝑷w~𝑹𝑷×𝑷/~𝑹
15 6 14 eqeltrd x𝑷y𝑷z𝑷w𝑷xy~𝑹+𝑹zw~𝑹𝑷×𝑷/~𝑹
16 1 3 5 15 2ecoptocl A𝑹B𝑹A+𝑹B𝑷×𝑷/~𝑹
17 16 1 eleqtrrdi A𝑹B𝑹A+𝑹B𝑹