Metamath Proof Explorer


Theorem addscut

Description: Demonstrate the cut properties of surreal addition. This gives us closure together with a pair of set-less-than relationships for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Hypotheses addscut.1 φXNo
addscut.2 φYNo
Assertion addscut Could not format assertion : No typesetting found for |- ( ph -> ( ( X +s Y ) e. No /\ ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) <

Proof

Step Hyp Ref Expression
1 addscut.1 φXNo
2 addscut.2 φYNo
3 1 2 addscutlem Could not format ( ph -> ( ( X +s Y ) e. No /\ ( { a | E. b e. ( _Left ` X ) a = ( b +s Y ) } u. { c | E. d e. ( _Left ` Y ) c = ( X +s d ) } ) < ( ( X +s Y ) e. No /\ ( { a | E. b e. ( _Left ` X ) a = ( b +s Y ) } u. { c | E. d e. ( _Left ` Y ) c = ( X +s d ) } ) <
4 biid Could not format ( ( X +s Y ) e. No <-> ( X +s Y ) e. No ) : No typesetting found for |- ( ( X +s Y ) e. No <-> ( X +s Y ) e. No ) with typecode |-
5 oveq1 Could not format ( l = b -> ( l +s Y ) = ( b +s Y ) ) : No typesetting found for |- ( l = b -> ( l +s Y ) = ( b +s Y ) ) with typecode |-
6 5 eqeq2d Could not format ( l = b -> ( p = ( l +s Y ) <-> p = ( b +s Y ) ) ) : No typesetting found for |- ( l = b -> ( p = ( l +s Y ) <-> p = ( b +s Y ) ) ) with typecode |-
7 6 cbvrexvw Could not format ( E. l e. ( _Left ` X ) p = ( l +s Y ) <-> E. b e. ( _Left ` X ) p = ( b +s Y ) ) : No typesetting found for |- ( E. l e. ( _Left ` X ) p = ( l +s Y ) <-> E. b e. ( _Left ` X ) p = ( b +s Y ) ) with typecode |-
8 eqeq1 Could not format ( p = a -> ( p = ( b +s Y ) <-> a = ( b +s Y ) ) ) : No typesetting found for |- ( p = a -> ( p = ( b +s Y ) <-> a = ( b +s Y ) ) ) with typecode |-
9 8 rexbidv Could not format ( p = a -> ( E. b e. ( _Left ` X ) p = ( b +s Y ) <-> E. b e. ( _Left ` X ) a = ( b +s Y ) ) ) : No typesetting found for |- ( p = a -> ( E. b e. ( _Left ` X ) p = ( b +s Y ) <-> E. b e. ( _Left ` X ) a = ( b +s Y ) ) ) with typecode |-
10 7 9 bitrid Could not format ( p = a -> ( E. l e. ( _Left ` X ) p = ( l +s Y ) <-> E. b e. ( _Left ` X ) a = ( b +s Y ) ) ) : No typesetting found for |- ( p = a -> ( E. l e. ( _Left ` X ) p = ( l +s Y ) <-> E. b e. ( _Left ` X ) a = ( b +s Y ) ) ) with typecode |-
11 10 cbvabv Could not format { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } = { a | E. b e. ( _Left ` X ) a = ( b +s Y ) } : No typesetting found for |- { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } = { a | E. b e. ( _Left ` X ) a = ( b +s Y ) } with typecode |-
12 oveq2 Could not format ( m = d -> ( X +s m ) = ( X +s d ) ) : No typesetting found for |- ( m = d -> ( X +s m ) = ( X +s d ) ) with typecode |-
13 12 eqeq2d Could not format ( m = d -> ( q = ( X +s m ) <-> q = ( X +s d ) ) ) : No typesetting found for |- ( m = d -> ( q = ( X +s m ) <-> q = ( X +s d ) ) ) with typecode |-
14 13 cbvrexvw Could not format ( E. m e. ( _Left ` Y ) q = ( X +s m ) <-> E. d e. ( _Left ` Y ) q = ( X +s d ) ) : No typesetting found for |- ( E. m e. ( _Left ` Y ) q = ( X +s m ) <-> E. d e. ( _Left ` Y ) q = ( X +s d ) ) with typecode |-
15 eqeq1 Could not format ( q = c -> ( q = ( X +s d ) <-> c = ( X +s d ) ) ) : No typesetting found for |- ( q = c -> ( q = ( X +s d ) <-> c = ( X +s d ) ) ) with typecode |-
16 15 rexbidv Could not format ( q = c -> ( E. d e. ( _Left ` Y ) q = ( X +s d ) <-> E. d e. ( _Left ` Y ) c = ( X +s d ) ) ) : No typesetting found for |- ( q = c -> ( E. d e. ( _Left ` Y ) q = ( X +s d ) <-> E. d e. ( _Left ` Y ) c = ( X +s d ) ) ) with typecode |-
17 14 16 bitrid Could not format ( q = c -> ( E. m e. ( _Left ` Y ) q = ( X +s m ) <-> E. d e. ( _Left ` Y ) c = ( X +s d ) ) ) : No typesetting found for |- ( q = c -> ( E. m e. ( _Left ` Y ) q = ( X +s m ) <-> E. d e. ( _Left ` Y ) c = ( X +s d ) ) ) with typecode |-
18 17 cbvabv Could not format { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } = { c | E. d e. ( _Left ` Y ) c = ( X +s d ) } : No typesetting found for |- { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } = { c | E. d e. ( _Left ` Y ) c = ( X +s d ) } with typecode |-
19 11 18 uneq12i Could not format ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) = ( { a | E. b e. ( _Left ` X ) a = ( b +s Y ) } u. { c | E. d e. ( _Left ` Y ) c = ( X +s d ) } ) : No typesetting found for |- ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) = ( { a | E. b e. ( _Left ` X ) a = ( b +s Y ) } u. { c | E. d e. ( _Left ` Y ) c = ( X +s d ) } ) with typecode |-
20 19 breq1i Could not format ( ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) < ( { a | E. b e. ( _Left ` X ) a = ( b +s Y ) } u. { c | E. d e. ( _Left ` Y ) c = ( X +s d ) } ) < ( { a | E. b e. ( _Left ` X ) a = ( b +s Y ) } u. { c | E. d e. ( _Left ` Y ) c = ( X +s d ) } ) <
21 oveq1 Could not format ( r = f -> ( r +s Y ) = ( f +s Y ) ) : No typesetting found for |- ( r = f -> ( r +s Y ) = ( f +s Y ) ) with typecode |-
22 21 eqeq2d Could not format ( r = f -> ( w = ( r +s Y ) <-> w = ( f +s Y ) ) ) : No typesetting found for |- ( r = f -> ( w = ( r +s Y ) <-> w = ( f +s Y ) ) ) with typecode |-
23 22 cbvrexvw Could not format ( E. r e. ( _Right ` X ) w = ( r +s Y ) <-> E. f e. ( _Right ` X ) w = ( f +s Y ) ) : No typesetting found for |- ( E. r e. ( _Right ` X ) w = ( r +s Y ) <-> E. f e. ( _Right ` X ) w = ( f +s Y ) ) with typecode |-
24 eqeq1 Could not format ( w = e -> ( w = ( f +s Y ) <-> e = ( f +s Y ) ) ) : No typesetting found for |- ( w = e -> ( w = ( f +s Y ) <-> e = ( f +s Y ) ) ) with typecode |-
25 24 rexbidv Could not format ( w = e -> ( E. f e. ( _Right ` X ) w = ( f +s Y ) <-> E. f e. ( _Right ` X ) e = ( f +s Y ) ) ) : No typesetting found for |- ( w = e -> ( E. f e. ( _Right ` X ) w = ( f +s Y ) <-> E. f e. ( _Right ` X ) e = ( f +s Y ) ) ) with typecode |-
26 23 25 bitrid Could not format ( w = e -> ( E. r e. ( _Right ` X ) w = ( r +s Y ) <-> E. f e. ( _Right ` X ) e = ( f +s Y ) ) ) : No typesetting found for |- ( w = e -> ( E. r e. ( _Right ` X ) w = ( r +s Y ) <-> E. f e. ( _Right ` X ) e = ( f +s Y ) ) ) with typecode |-
27 26 cbvabv Could not format { w | E. r e. ( _Right ` X ) w = ( r +s Y ) } = { e | E. f e. ( _Right ` X ) e = ( f +s Y ) } : No typesetting found for |- { w | E. r e. ( _Right ` X ) w = ( r +s Y ) } = { e | E. f e. ( _Right ` X ) e = ( f +s Y ) } with typecode |-
28 oveq2 Could not format ( s = h -> ( X +s s ) = ( X +s h ) ) : No typesetting found for |- ( s = h -> ( X +s s ) = ( X +s h ) ) with typecode |-
29 28 eqeq2d Could not format ( s = h -> ( t = ( X +s s ) <-> t = ( X +s h ) ) ) : No typesetting found for |- ( s = h -> ( t = ( X +s s ) <-> t = ( X +s h ) ) ) with typecode |-
30 29 cbvrexvw Could not format ( E. s e. ( _Right ` Y ) t = ( X +s s ) <-> E. h e. ( _Right ` Y ) t = ( X +s h ) ) : No typesetting found for |- ( E. s e. ( _Right ` Y ) t = ( X +s s ) <-> E. h e. ( _Right ` Y ) t = ( X +s h ) ) with typecode |-
31 eqeq1 Could not format ( t = g -> ( t = ( X +s h ) <-> g = ( X +s h ) ) ) : No typesetting found for |- ( t = g -> ( t = ( X +s h ) <-> g = ( X +s h ) ) ) with typecode |-
32 31 rexbidv Could not format ( t = g -> ( E. h e. ( _Right ` Y ) t = ( X +s h ) <-> E. h e. ( _Right ` Y ) g = ( X +s h ) ) ) : No typesetting found for |- ( t = g -> ( E. h e. ( _Right ` Y ) t = ( X +s h ) <-> E. h e. ( _Right ` Y ) g = ( X +s h ) ) ) with typecode |-
33 30 32 bitrid Could not format ( t = g -> ( E. s e. ( _Right ` Y ) t = ( X +s s ) <-> E. h e. ( _Right ` Y ) g = ( X +s h ) ) ) : No typesetting found for |- ( t = g -> ( E. s e. ( _Right ` Y ) t = ( X +s s ) <-> E. h e. ( _Right ` Y ) g = ( X +s h ) ) ) with typecode |-
34 33 cbvabv Could not format { t | E. s e. ( _Right ` Y ) t = ( X +s s ) } = { g | E. h e. ( _Right ` Y ) g = ( X +s h ) } : No typesetting found for |- { t | E. s e. ( _Right ` Y ) t = ( X +s s ) } = { g | E. h e. ( _Right ` Y ) g = ( X +s h ) } with typecode |-
35 27 34 uneq12i Could not format ( { w | E. r e. ( _Right ` X ) w = ( r +s Y ) } u. { t | E. s e. ( _Right ` Y ) t = ( X +s s ) } ) = ( { e | E. f e. ( _Right ` X ) e = ( f +s Y ) } u. { g | E. h e. ( _Right ` Y ) g = ( X +s h ) } ) : No typesetting found for |- ( { w | E. r e. ( _Right ` X ) w = ( r +s Y ) } u. { t | E. s e. ( _Right ` Y ) t = ( X +s s ) } ) = ( { e | E. f e. ( _Right ` X ) e = ( f +s Y ) } u. { g | E. h e. ( _Right ` Y ) g = ( X +s h ) } ) with typecode |-
36 35 breq2i Could not format ( { ( X +s Y ) } < { ( X +s Y ) } < { ( X +s Y ) } <
37 4 20 36 3anbi123i Could not format ( ( ( X +s Y ) e. No /\ ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) < ( ( X +s Y ) e. No /\ ( { a | E. b e. ( _Left ` X ) a = ( b +s Y ) } u. { c | E. d e. ( _Left ` Y ) c = ( X +s d ) } ) < ( ( X +s Y ) e. No /\ ( { a | E. b e. ( _Left ` X ) a = ( b +s Y ) } u. { c | E. d e. ( _Left ` Y ) c = ( X +s d ) } ) <
38 3 37 sylibr Could not format ( ph -> ( ( X +s Y ) e. No /\ ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) < ( ( X +s Y ) e. No /\ ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) <