Metamath Proof Explorer


Theorem addsin

Description: Sum of sines. (Contributed by Paul Chapman, 12-Oct-2007)

Ref Expression
Assertion addsin ABsinA+sinB=2sinA+B2cosAB2

Proof

Step Hyp Ref Expression
1 addcl ABA+B
2 1 halfcld ABA+B2
3 2 sincld ABsinA+B2
4 subcl ABAB
5 4 halfcld ABAB2
6 5 coscld ABcosAB2
7 3 6 mulcld ABsinA+B2cosAB2
8 7 2timesd AB2sinA+B2cosAB2=sinA+B2cosAB2+sinA+B2cosAB2
9 sinadd A+B2AB2sinA+B2+AB2=sinA+B2cosAB2+cosA+B2sinAB2
10 2 5 9 syl2anc ABsinA+B2+AB2=sinA+B2cosAB2+cosA+B2sinAB2
11 sinsub A+B2AB2sinA+B2AB2=sinA+B2cosAB2cosA+B2sinAB2
12 2 5 11 syl2anc ABsinA+B2AB2=sinA+B2cosAB2cosA+B2sinAB2
13 10 12 oveq12d ABsinA+B2+AB2+sinA+B2AB2=sinA+B2cosAB2+cosA+B2sinAB2+sinA+B2cosAB2cosA+B2sinAB2
14 2 coscld ABcosA+B2
15 5 sincld ABsinAB2
16 14 15 mulcld ABcosA+B2sinAB2
17 7 16 7 ppncand ABsinA+B2cosAB2+cosA+B2sinAB2+sinA+B2cosAB2cosA+B2sinAB2=sinA+B2cosAB2+sinA+B2cosAB2
18 13 17 eqtrd ABsinA+B2+AB2+sinA+B2AB2=sinA+B2cosAB2+sinA+B2cosAB2
19 halfaddsub ABA+B2+AB2=AA+B2AB2=B
20 19 simpld ABA+B2+AB2=A
21 20 fveq2d ABsinA+B2+AB2=sinA
22 19 simprd ABA+B2AB2=B
23 22 fveq2d ABsinA+B2AB2=sinB
24 21 23 oveq12d ABsinA+B2+AB2+sinA+B2AB2=sinA+sinB
25 8 18 24 3eqtr2rd ABsinA+sinB=2sinA+B2cosAB2