Metamath Proof Explorer


Theorem addsub4

Description: Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 4-Mar-2005)

Ref Expression
Assertion addsub4 A B C D A + B - C + D = A C + B - D

Proof

Step Hyp Ref Expression
1 simpll A B C D A
2 simplr A B C D B
3 simprl A B C D C
4 addsub A B C A + B - C = A - C + B
5 1 2 3 4 syl3anc A B C D A + B - C = A - C + B
6 5 oveq1d A B C D A + B - C - D = A C + B - D
7 1 2 addcld A B C D A + B
8 simprr A B C D D
9 subsub4 A + B C D A + B - C - D = A + B - C + D
10 7 3 8 9 syl3anc A B C D A + B - C - D = A + B - C + D
11 subcl A C A C
12 11 ad2ant2r A B C D A C
13 addsubass A C B D A C + B - D = A C + B - D
14 12 2 8 13 syl3anc A B C D A C + B - D = A C + B - D
15 6 10 14 3eqtr3d A B C D A + B - C + D = A C + B - D