Metamath Proof Explorer


Theorem addsubass

Description: Associative-type law for addition and subtraction. (Contributed by NM, 6-Aug-2003) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion addsubass ABCA+B-C=A+B-C

Proof

Step Hyp Ref Expression
1 simp1 ABCA
2 subcl BCBC
3 2 3adant1 ABCBC
4 simp3 ABCC
5 1 3 4 addassd ABCA+BC+C=A+BC+C
6 npcan BCB-C+C=B
7 6 3adant1 ABCB-C+C=B
8 7 oveq2d ABCA+BC+C=A+B
9 5 8 eqtrd ABCA+BC+C=A+B
10 9 oveq1d ABCA+B-C+C-C=A+B-C
11 1 3 addcld ABCA+B-C
12 pncan A+B-CCA+B-C+C-C=A+B-C
13 11 4 12 syl2anc ABCA+B-C+C-C=A+B-C
14 10 13 eqtr3d ABCA+B-C=A+B-C