Metamath Proof Explorer


Theorem adjbd1o

Description: The mapping of adjoints of bounded linear operators is one-to-one onto. (Contributed by NM, 19-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion adjbd1o adjhBndLinOp:BndLinOp1-1 ontoBndLinOp

Proof

Step Hyp Ref Expression
1 adj1o adjh:domadjh1-1 ontodomadjh
2 f1of1 adjh:domadjh1-1 ontodomadjhadjh:domadjh1-1domadjh
3 1 2 ax-mp adjh:domadjh1-1domadjh
4 bdopssadj BndLinOpdomadjh
5 f1ores adjh:domadjh1-1domadjhBndLinOpdomadjhadjhBndLinOp:BndLinOp1-1 ontoadjhBndLinOp
6 3 4 5 mp2an adjhBndLinOp:BndLinOp1-1 ontoadjhBndLinOp
7 vex yV
8 7 elima yadjhBndLinOpxBndLinOpxadjhy
9 f1ofn adjh:domadjh1-1 ontodomadjhadjhFndomadjh
10 1 9 ax-mp adjhFndomadjh
11 bdopadj xBndLinOpxdomadjh
12 fnbrfvb adjhFndomadjhxdomadjhadjhx=yxadjhy
13 10 11 12 sylancr xBndLinOpadjhx=yxadjhy
14 13 rexbiia xBndLinOpadjhx=yxBndLinOpxadjhy
15 adjbdlnb xBndLinOpadjhxBndLinOp
16 eleq1 adjhx=yadjhxBndLinOpyBndLinOp
17 15 16 bitrid adjhx=yxBndLinOpyBndLinOp
18 17 biimpcd xBndLinOpadjhx=yyBndLinOp
19 18 rexlimiv xBndLinOpadjhx=yyBndLinOp
20 adjbdln yBndLinOpadjhyBndLinOp
21 bdopadj yBndLinOpydomadjh
22 adjadj ydomadjhadjhadjhy=y
23 21 22 syl yBndLinOpadjhadjhy=y
24 fveqeq2 x=adjhyadjhx=yadjhadjhy=y
25 24 rspcev adjhyBndLinOpadjhadjhy=yxBndLinOpadjhx=y
26 20 23 25 syl2anc yBndLinOpxBndLinOpadjhx=y
27 19 26 impbii xBndLinOpadjhx=yyBndLinOp
28 8 14 27 3bitr2i yadjhBndLinOpyBndLinOp
29 28 eqriv adjhBndLinOp=BndLinOp
30 f1oeq3 adjhBndLinOp=BndLinOpadjhBndLinOp:BndLinOp1-1 ontoadjhBndLinOpadjhBndLinOp:BndLinOp1-1 ontoBndLinOp
31 29 30 ax-mp adjhBndLinOp:BndLinOp1-1 ontoadjhBndLinOpadjhBndLinOp:BndLinOp1-1 ontoBndLinOp
32 6 31 mpbi adjhBndLinOp:BndLinOp1-1 ontoBndLinOp