Metamath Proof Explorer


Theorem afv20fv0

Description: If the alternate function value at an argument is the empty set, the function's value at this argument is the empty set. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion afv20fv0 F''''A=FA=

Proof

Step Hyp Ref Expression
1 afv20defat F''''A=FdefAtA
2 dfatafv2eqfv FdefAtAF''''A=FA
3 2 eqcomd FdefAtAFA=F''''A
4 3 adantr FdefAtAF''''A=FA=F''''A
5 simpr FdefAtAF''''A=F''''A=
6 4 5 eqtrd FdefAtAF''''A=FA=
7 1 6 mpancom F''''A=FA=