Metamath Proof Explorer


Theorem afv2ndefb

Description: Two ways to say that an alternate function value is not defined. (Contributed by AV, 5-Sep-2022)

Ref Expression
Assertion afv2ndefb F''''A=𝒫ranFF''''AranF

Proof

Step Hyp Ref Expression
1 pwuninel ¬𝒫ranFranF
2 df-nel F''''AranF¬F''''AranF
3 eleq1 F''''A=𝒫ranFF''''AranF𝒫ranFranF
4 3 notbid F''''A=𝒫ranF¬F''''AranF¬𝒫ranFranF
5 2 4 bitrid F''''A=𝒫ranFF''''AranF¬𝒫ranFranF
6 1 5 mpbiri F''''A=𝒫ranFF''''AranF
7 funressndmafv2rn FdefAtAF''''AranF
8 7 con3i ¬F''''AranF¬FdefAtA
9 2 8 sylbi F''''AranF¬FdefAtA
10 ndfatafv2 ¬FdefAtAF''''A=𝒫ranF
11 9 10 syl F''''AranFF''''A=𝒫ranF
12 6 11 impbii F''''A=𝒫ranFF''''AranF