Metamath Proof Explorer


Theorem afveu

Description: The value of a function at a unique point, analogous to fveu . (Contributed by Alexander van der Vekens, 29-Nov-2017)

Ref Expression
Assertion afveu ∃!xAFxF'''A=x|AFx

Proof

Step Hyp Ref Expression
1 df-br AFxAxF
2 1 eubii ∃!xAFx∃!xAxF
3 eu2ndop1stv ∃!xAxFAV
4 2 3 sylbi ∃!xAFxAV
5 euex ∃!xAFxxAFx
6 eldmg AVAdomFxAFx
7 5 6 syl5ibrcom ∃!xAFxAVAdomF
8 7 impcom AV∃!xAFxAdomF
9 dfdfat2 FdefAtAAdomF∃!xAFx
10 afvfundmfveq FdefAtAF'''A=FA
11 fveu ∃!xAFxFA=x|AFx
12 10 11 sylan9eq FdefAtA∃!xAFxF'''A=x|AFx
13 12 ex FdefAtA∃!xAFxF'''A=x|AFx
14 9 13 sylbir AdomF∃!xAFx∃!xAFxF'''A=x|AFx
15 14 expcom ∃!xAFxAdomF∃!xAFxF'''A=x|AFx
16 15 pm2.43a ∃!xAFxAdomFF'''A=x|AFx
17 16 adantl AV∃!xAFxAdomFF'''A=x|AFx
18 8 17 mpd AV∃!xAFxF'''A=x|AFx
19 4 18 mpancom ∃!xAFxF'''A=x|AFx