Description: In the AKS-theorem the subset defined by E takes values in the positive integers. (Contributed by metakunt, 7-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | aks6d1c2p1.1 | |
|
aks6d1c2p1.2 | |
||
aks6d1c2p1.3 | |
||
aks6d1c2p1.4 | |
||
Assertion | aks6d1c2p1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aks6d1c2p1.1 | |
|
2 | aks6d1c2p1.2 | |
|
3 | aks6d1c2p1.3 | |
|
4 | aks6d1c2p1.4 | |
|
5 | prmnn | |
|
6 | 2 5 | syl | |
7 | 6 | adantr | |
8 | simpr | |
|
9 | xp1st | |
|
10 | 8 9 | syl | |
11 | 7 10 | nnexpcld | |
12 | 1 6 | jca | |
13 | nndivdvds | |
|
14 | 12 13 | syl | |
15 | 3 14 | mpbid | |
16 | 15 | adantr | |
17 | xp2nd | |
|
18 | 8 17 | syl | |
19 | 16 18 | nnexpcld | |
20 | 11 19 | nnmulcld | |
21 | vex | |
|
22 | vex | |
|
23 | 21 22 | op1std | |
24 | 23 | oveq2d | |
25 | 21 22 | op2ndd | |
26 | 25 | oveq2d | |
27 | 24 26 | oveq12d | |
28 | 27 | mpompt | |
29 | 28 | eqcomi | |
30 | 4 29 | eqtri | |
31 | 20 30 | fmptd | |