Description: Archimedean property of real numbers. For any real number, there is an integer greater than it. Theorem I.29 of Apostol p. 26. (Contributed by NM, 21-Jan-1997)
Ref | Expression | ||
---|---|---|---|
Assertion | arch | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 | |
|
2 | 1 | rexbidv | |
3 | nnunb | |
|
4 | ralnex | |
|
5 | 3 4 | mpbir | |
6 | rexnal | |
|
7 | nnre | |
|
8 | axlttri | |
|
9 | 7 8 | sylan2 | |
10 | equcom | |
|
11 | 10 | orbi1i | |
12 | orcom | |
|
13 | 11 12 | bitri | |
14 | 13 | notbii | |
15 | 9 14 | bitrdi | |
16 | 15 | biimprd | |
17 | 16 | reximdva | |
18 | 6 17 | biimtrrid | |
19 | 18 | ralimia | |
20 | 5 19 | ax-mp | |
21 | 2 20 | vtoclri | |