Metamath Proof Explorer


Theorem arch

Description: Archimedean property of real numbers. For any real number, there is an integer greater than it. Theorem I.29 of Apostol p. 26. (Contributed by NM, 21-Jan-1997)

Ref Expression
Assertion arch AnA<n

Proof

Step Hyp Ref Expression
1 breq1 y=Ay<nA<n
2 1 rexbidv y=Any<nnA<n
3 nnunb ¬ynn<yn=y
4 ralnex y¬nn<yn=y¬ynn<yn=y
5 3 4 mpbir y¬nn<yn=y
6 rexnal n¬n<yn=y¬nn<yn=y
7 nnre nn
8 axlttri yny<n¬y=nn<y
9 7 8 sylan2 yny<n¬y=nn<y
10 equcom y=nn=y
11 10 orbi1i y=nn<yn=yn<y
12 orcom n=yn<yn<yn=y
13 11 12 bitri y=nn<yn<yn=y
14 13 notbii ¬y=nn<y¬n<yn=y
15 9 14 bitrdi yny<n¬n<yn=y
16 15 biimprd yn¬n<yn=yy<n
17 16 reximdva yn¬n<yn=yny<n
18 6 17 biimtrrid y¬nn<yn=yny<n
19 18 ralimia y¬nn<yn=yyny<n
20 5 19 ax-mp yny<n
21 2 20 vtoclri AnA<n