Description: The set of positive integers is unbounded above. Theorem I.28 of Apostol p. 26. (Contributed by NM, 21-Jan-1997)
Ref | Expression | ||
---|---|---|---|
Assertion | nnunb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.24 | |
|
2 | peano2rem | |
|
3 | ltm1 | |
|
4 | ovex | |
|
5 | eleq1 | |
|
6 | breq1 | |
|
7 | breq1 | |
|
8 | 7 | rexbidv | |
9 | 6 8 | imbi12d | |
10 | 5 9 | imbi12d | |
11 | 4 10 | spcv | |
12 | 3 11 | syl7 | |
13 | 2 12 | syl5 | |
14 | 13 | pm2.43d | |
15 | df-rex | |
|
16 | 14 15 | imbitrdi | |
17 | 16 | com12 | |
18 | nnre | |
|
19 | 1re | |
|
20 | ltsubadd | |
|
21 | 19 20 | mp3an2 | |
22 | 18 21 | sylan2 | |
23 | 22 | pm5.32da | |
24 | 23 | exbidv | |
25 | peano2nn | |
|
26 | ovex | |
|
27 | eleq1 | |
|
28 | breq2 | |
|
29 | 27 28 | anbi12d | |
30 | 26 29 | spcev | |
31 | 25 30 | sylan | |
32 | 31 | exlimiv | |
33 | 24 32 | syl6bi | |
34 | 17 33 | syld | |
35 | df-ral | |
|
36 | df-ral | |
|
37 | alinexa | |
|
38 | 36 37 | bitr2i | |
39 | 38 | con1bii | |
40 | 34 35 39 | 3imtr4g | |
41 | 40 | anim2d | |
42 | 1 41 | mtoi | |
43 | 42 | nrex | |
44 | nnssre | |
|
45 | 1nn | |
|
46 | 45 | ne0ii | |
47 | sup2 | |
|
48 | 44 46 47 | mp3an12 | |
49 | 43 48 | mto | |