Metamath Proof Explorer


Theorem nnunb

Description: The set of positive integers is unbounded above. Theorem I.28 of Apostol p. 26. (Contributed by NM, 21-Jan-1997)

Ref Expression
Assertion nnunb ¬xyy<xy=x

Proof

Step Hyp Ref Expression
1 pm3.24 ¬y¬x<y¬y¬x<y
2 peano2rem xx1
3 ltm1 xx1<x
4 ovex x1V
5 eleq1 y=x1yx1
6 breq1 y=x1y<xx1<x
7 breq1 y=x1y<zx1<z
8 7 rexbidv y=x1zy<zzx1<z
9 6 8 imbi12d y=x1y<xzy<zx1<xzx1<z
10 5 9 imbi12d y=x1yy<xzy<zx1x1<xzx1<z
11 4 10 spcv yyy<xzy<zx1x1<xzx1<z
12 3 11 syl7 yyy<xzy<zx1xzx1<z
13 2 12 syl5 yyy<xzy<zxxzx1<z
14 13 pm2.43d yyy<xzy<zxzx1<z
15 df-rex zx1<zzzx1<z
16 14 15 imbitrdi yyy<xzy<zxzzx1<z
17 16 com12 xyyy<xzy<zzzx1<z
18 nnre zz
19 1re 1
20 ltsubadd x1zx1<zx<z+1
21 19 20 mp3an2 xzx1<zx<z+1
22 18 21 sylan2 xzx1<zx<z+1
23 22 pm5.32da xzx1<zzx<z+1
24 23 exbidv xzzx1<zzzx<z+1
25 peano2nn zz+1
26 ovex z+1V
27 eleq1 y=z+1yz+1
28 breq2 y=z+1x<yx<z+1
29 27 28 anbi12d y=z+1yx<yz+1x<z+1
30 26 29 spcev z+1x<z+1yyx<y
31 25 30 sylan zx<z+1yyx<y
32 31 exlimiv zzx<z+1yyx<y
33 24 32 syl6bi xzzx1<zyyx<y
34 17 33 syld xyyy<xzy<zyyx<y
35 df-ral yy<xzy<zyyy<xzy<z
36 df-ral y¬x<yyy¬x<y
37 alinexa yy¬x<y¬yyx<y
38 36 37 bitr2i ¬yyx<yy¬x<y
39 38 con1bii ¬y¬x<yyyx<y
40 34 35 39 3imtr4g xyy<xzy<z¬y¬x<y
41 40 anim2d xy¬x<yyy<xzy<zy¬x<y¬y¬x<y
42 1 41 mtoi x¬y¬x<yyy<xzy<z
43 42 nrex ¬xy¬x<yyy<xzy<z
44 nnssre
45 1nn 1
46 45 ne0ii
47 sup2 xyy<xy=xxy¬x<yyy<xzy<z
48 44 46 47 mp3an12 xyy<xy=xxy¬x<yyy<xzy<z
49 43 48 mto ¬xyy<xy=x