Metamath Proof Explorer


Theorem arwass

Description: Associativity of composition in a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses arwlid.h H = Hom a C
arwlid.o · ˙ = comp a C
arwlid.a 1 ˙ = Id a C
arwlid.f φ F X H Y
arwass.g φ G Y H Z
arwass.k φ K Z H W
Assertion arwass φ K · ˙ G · ˙ F = K · ˙ G · ˙ F

Proof

Step Hyp Ref Expression
1 arwlid.h H = Hom a C
2 arwlid.o · ˙ = comp a C
3 arwlid.a 1 ˙ = Id a C
4 arwlid.f φ F X H Y
5 arwass.g φ G Y H Z
6 arwass.k φ K Z H W
7 eqid Base C = Base C
8 eqid Hom C = Hom C
9 eqid comp C = comp C
10 1 homarcl F X H Y C Cat
11 4 10 syl φ C Cat
12 1 7 homarcl2 F X H Y X Base C Y Base C
13 4 12 syl φ X Base C Y Base C
14 13 simpld φ X Base C
15 13 simprd φ Y Base C
16 1 7 homarcl2 K Z H W Z Base C W Base C
17 6 16 syl φ Z Base C W Base C
18 17 simpld φ Z Base C
19 1 8 homahom F X H Y 2 nd F X Hom C Y
20 4 19 syl φ 2 nd F X Hom C Y
21 1 8 homahom G Y H Z 2 nd G Y Hom C Z
22 5 21 syl φ 2 nd G Y Hom C Z
23 17 simprd φ W Base C
24 1 8 homahom K Z H W 2 nd K Z Hom C W
25 6 24 syl φ 2 nd K Z Hom C W
26 7 8 9 11 14 15 18 20 22 23 25 catass φ 2 nd K Y Z comp C W 2 nd G X Y comp C W 2 nd F = 2 nd K X Z comp C W 2 nd G X Y comp C Z 2 nd F
27 2 1 5 6 9 coa2 φ 2 nd K · ˙ G = 2 nd K Y Z comp C W 2 nd G
28 27 oveq1d φ 2 nd K · ˙ G X Y comp C W 2 nd F = 2 nd K Y Z comp C W 2 nd G X Y comp C W 2 nd F
29 2 1 4 5 9 coa2 φ 2 nd G · ˙ F = 2 nd G X Y comp C Z 2 nd F
30 29 oveq2d φ 2 nd K X Z comp C W 2 nd G · ˙ F = 2 nd K X Z comp C W 2 nd G X Y comp C Z 2 nd F
31 26 28 30 3eqtr4d φ 2 nd K · ˙ G X Y comp C W 2 nd F = 2 nd K X Z comp C W 2 nd G · ˙ F
32 31 oteq3d φ X W 2 nd K · ˙ G X Y comp C W 2 nd F = X W 2 nd K X Z comp C W 2 nd G · ˙ F
33 2 1 5 6 coahom φ K · ˙ G Y H W
34 2 1 4 33 9 coaval φ K · ˙ G · ˙ F = X W 2 nd K · ˙ G X Y comp C W 2 nd F
35 2 1 4 5 coahom φ G · ˙ F X H Z
36 2 1 35 6 9 coaval φ K · ˙ G · ˙ F = X W 2 nd K X Z comp C W 2 nd G · ˙ F
37 32 34 36 3eqtr4d φ K · ˙ G · ˙ F = K · ˙ G · ˙ F