Metamath Proof Explorer


Theorem asclf

Description: The algebra scalars function is a function into the base set. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses asclf.a A=algScW
asclf.f F=ScalarW
asclf.r φWRing
asclf.l φWLMod
asclf.k K=BaseF
asclf.b B=BaseW
Assertion asclf φA:KB

Proof

Step Hyp Ref Expression
1 asclf.a A=algScW
2 asclf.f F=ScalarW
3 asclf.r φWRing
4 asclf.l φWLMod
5 asclf.k K=BaseF
6 asclf.b B=BaseW
7 4 adantr φxKWLMod
8 simpr φxKxK
9 eqid 1W=1W
10 6 9 ringidcl WRing1WB
11 3 10 syl φ1WB
12 11 adantr φxK1WB
13 eqid W=W
14 6 2 13 5 lmodvscl WLModxK1WBxW1WB
15 7 8 12 14 syl3anc φxKxW1WB
16 1 2 5 13 9 asclfval A=xKxW1W
17 15 16 fmptd φA:KB