Description: If two structures have the same components (properties), one is an associative algebra iff the other one is. The last hypotheses on 1r can be discharged either by letting W = _V (if strong equality is known on .s ) or assuming K is a ring. (Contributed by Mario Carneiro, 5-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | asclpropd.f | |
|
asclpropd.g | |
||
asclpropd.1 | |
||
asclpropd.2 | |
||
asclpropd.3 | |
||
asclpropd.4 | |
||
asclpropd.5 | |
||
Assertion | asclpropd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | asclpropd.f | |
|
2 | asclpropd.g | |
|
3 | asclpropd.1 | |
|
4 | asclpropd.2 | |
|
5 | asclpropd.3 | |
|
6 | asclpropd.4 | |
|
7 | asclpropd.5 | |
|
8 | 5 | oveqrspc2v | |
9 | 8 | anassrs | |
10 | 7 9 | mpidan | |
11 | 6 | oveq2d | |
12 | 11 | adantr | |
13 | 10 12 | eqtrd | |
14 | 13 | mpteq2dva | |
15 | 3 | mpteq1d | |
16 | 4 | mpteq1d | |
17 | 14 15 16 | 3eqtr3d | |
18 | eqid | |
|
19 | eqid | |
|
20 | eqid | |
|
21 | eqid | |
|
22 | 18 1 19 20 21 | asclfval | |
23 | eqid | |
|
24 | eqid | |
|
25 | eqid | |
|
26 | eqid | |
|
27 | 23 2 24 25 26 | asclfval | |
28 | 17 22 27 | 3eqtr4g | |