Metamath Proof Explorer


Theorem asindmre

Description: Real part of domain of differentiability of arcsine. (Contributed by Brendan Leahy, 19-Dec-2018)

Ref Expression
Hypothesis dvasin.d D=−∞11+∞
Assertion asindmre D=11

Proof

Step Hyp Ref Expression
1 dvasin.d D=−∞11+∞
2 un12 11−∞11+∞=−∞1111+∞
3 neg1rr 1
4 3 rexri 1*
5 1xr 1*
6 pnfxr +∞*
7 4 5 6 3pm3.2i 1*1*+∞*
8 neg1lt0 1<0
9 0lt1 0<1
10 0re 0
11 1re 1
12 3 10 11 lttri 1<00<11<1
13 8 9 12 mp2an 1<1
14 ltpnf 11<+∞
15 11 14 ax-mp 1<+∞
16 13 15 pm3.2i 1<11<+∞
17 df-ioo .=x*,y*z*|x<zz<y
18 df-ico .=x*,y*z*|xzz<y
19 xrlenlt 1*w*1w¬w<1
20 xrlttr w*1*+∞*w<11<+∞w<+∞
21 xrltletr 1*1*w*1<11w1<w
22 17 18 19 17 20 21 ixxun 1*1*+∞*1<11<+∞111+∞=1+∞
23 7 16 22 mp2an 111+∞=1+∞
24 23 uneq2i −∞1111+∞=−∞11+∞
25 mnfxr −∞*
26 25 4 6 3pm3.2i −∞*1*+∞*
27 mnflt 1−∞<1
28 ltpnf 11<+∞
29 27 28 jca 1−∞<11<+∞
30 3 29 ax-mp −∞<11<+∞
31 df-ioc .=x*,y*z*|x<zzy
32 xrltnle 1*w*1<w¬w1
33 xrlelttr w*1*+∞*w11<+∞w<+∞
34 xrlttr −∞*1*w*−∞<11<w−∞<w
35 31 17 32 17 33 34 ixxun −∞*1*+∞*−∞<11<+∞−∞11+∞=−∞+∞
36 26 30 35 mp2an −∞11+∞=−∞+∞
37 24 36 eqtri −∞1111+∞=−∞+∞
38 ioomax −∞+∞=
39 2 37 38 3eqtri 11−∞11+∞=
40 39 difeq1i 11−∞11+∞−∞11+∞=−∞11+∞
41 difun2 11−∞11+∞−∞11+∞=11−∞11+∞
42 ax-resscn
43 difin2 −∞11+∞=−∞11+∞
44 42 43 ax-mp −∞11+∞=−∞11+∞
45 40 41 44 3eqtr3ri −∞11+∞=11−∞11+∞
46 1 ineq1i D=−∞11+∞
47 incom 11−∞1=−∞111
48 31 17 32 ixxdisj −∞*1*1*−∞111=
49 25 4 5 48 mp3an −∞111=
50 47 49 eqtri 11−∞1=
51 17 18 19 ixxdisj 1*1*+∞*111+∞=
52 4 5 6 51 mp3an 111+∞=
53 50 52 pm3.2i 11−∞1=111+∞=
54 un00 11−∞1=111+∞=11−∞1111+∞=
55 indi 11−∞11+∞=11−∞1111+∞
56 55 eqeq1i 11−∞11+∞=11−∞1111+∞=
57 disj3 11−∞11+∞=11=11−∞11+∞
58 54 56 57 3bitr2i 11−∞1=111+∞=11=11−∞11+∞
59 53 58 mpbi 11=11−∞11+∞
60 45 46 59 3eqtr4i D=11