Metamath Proof Explorer


Theorem asindmre

Description: Real part of domain of differentiability of arcsine. (Contributed by Brendan Leahy, 19-Dec-2018)

Ref Expression
Hypothesis dvasin.d D = −∞ 1 1 +∞
Assertion asindmre D = 1 1

Proof

Step Hyp Ref Expression
1 dvasin.d D = −∞ 1 1 +∞
2 un12 1 1 −∞ 1 1 +∞ = −∞ 1 1 1 1 +∞
3 neg1rr 1
4 3 rexri 1 *
5 1xr 1 *
6 pnfxr +∞ *
7 4 5 6 3pm3.2i 1 * 1 * +∞ *
8 neg1lt0 1 < 0
9 0lt1 0 < 1
10 0re 0
11 1re 1
12 3 10 11 lttri 1 < 0 0 < 1 1 < 1
13 8 9 12 mp2an 1 < 1
14 ltpnf 1 1 < +∞
15 11 14 ax-mp 1 < +∞
16 13 15 pm3.2i 1 < 1 1 < +∞
17 df-ioo . = x * , y * z * | x < z z < y
18 df-ico . = x * , y * z * | x z z < y
19 xrlenlt 1 * w * 1 w ¬ w < 1
20 xrlttr w * 1 * +∞ * w < 1 1 < +∞ w < +∞
21 xrltletr 1 * 1 * w * 1 < 1 1 w 1 < w
22 17 18 19 17 20 21 ixxun 1 * 1 * +∞ * 1 < 1 1 < +∞ 1 1 1 +∞ = 1 +∞
23 7 16 22 mp2an 1 1 1 +∞ = 1 +∞
24 23 uneq2i −∞ 1 1 1 1 +∞ = −∞ 1 1 +∞
25 mnfxr −∞ *
26 25 4 6 3pm3.2i −∞ * 1 * +∞ *
27 mnflt 1 −∞ < 1
28 ltpnf 1 1 < +∞
29 27 28 jca 1 −∞ < 1 1 < +∞
30 3 29 ax-mp −∞ < 1 1 < +∞
31 df-ioc . = x * , y * z * | x < z z y
32 xrltnle 1 * w * 1 < w ¬ w 1
33 xrlelttr w * 1 * +∞ * w 1 1 < +∞ w < +∞
34 xrlttr −∞ * 1 * w * −∞ < 1 1 < w −∞ < w
35 31 17 32 17 33 34 ixxun −∞ * 1 * +∞ * −∞ < 1 1 < +∞ −∞ 1 1 +∞ = −∞ +∞
36 26 30 35 mp2an −∞ 1 1 +∞ = −∞ +∞
37 24 36 eqtri −∞ 1 1 1 1 +∞ = −∞ +∞
38 ioomax −∞ +∞ =
39 2 37 38 3eqtri 1 1 −∞ 1 1 +∞ =
40 39 difeq1i 1 1 −∞ 1 1 +∞ −∞ 1 1 +∞ = −∞ 1 1 +∞
41 difun2 1 1 −∞ 1 1 +∞ −∞ 1 1 +∞ = 1 1 −∞ 1 1 +∞
42 ax-resscn
43 difin2 −∞ 1 1 +∞ = −∞ 1 1 +∞
44 42 43 ax-mp −∞ 1 1 +∞ = −∞ 1 1 +∞
45 40 41 44 3eqtr3ri −∞ 1 1 +∞ = 1 1 −∞ 1 1 +∞
46 1 ineq1i D = −∞ 1 1 +∞
47 incom 1 1 −∞ 1 = −∞ 1 1 1
48 31 17 32 ixxdisj −∞ * 1 * 1 * −∞ 1 1 1 =
49 25 4 5 48 mp3an −∞ 1 1 1 =
50 47 49 eqtri 1 1 −∞ 1 =
51 17 18 19 ixxdisj 1 * 1 * +∞ * 1 1 1 +∞ =
52 4 5 6 51 mp3an 1 1 1 +∞ =
53 50 52 pm3.2i 1 1 −∞ 1 = 1 1 1 +∞ =
54 un00 1 1 −∞ 1 = 1 1 1 +∞ = 1 1 −∞ 1 1 1 1 +∞ =
55 indi 1 1 −∞ 1 1 +∞ = 1 1 −∞ 1 1 1 1 +∞
56 55 eqeq1i 1 1 −∞ 1 1 +∞ = 1 1 −∞ 1 1 1 1 +∞ =
57 disj3 1 1 −∞ 1 1 +∞ = 1 1 = 1 1 −∞ 1 1 +∞
58 54 56 57 3bitr2i 1 1 −∞ 1 = 1 1 1 +∞ = 1 1 = 1 1 −∞ 1 1 +∞
59 53 58 mpbi 1 1 = 1 1 −∞ 1 1 +∞
60 45 46 59 3eqtr4i D = 1 1