Step |
Hyp |
Ref |
Expression |
1 |
|
dvasin.d |
⊢ 𝐷 = ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) |
2 |
|
un12 |
⊢ ( ( - 1 (,) 1 ) ∪ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) = ( ( -∞ (,] - 1 ) ∪ ( ( - 1 (,) 1 ) ∪ ( 1 [,) +∞ ) ) ) |
3 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
4 |
3
|
rexri |
⊢ - 1 ∈ ℝ* |
5 |
|
1xr |
⊢ 1 ∈ ℝ* |
6 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
7 |
4 5 6
|
3pm3.2i |
⊢ ( - 1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ +∞ ∈ ℝ* ) |
8 |
|
neg1lt0 |
⊢ - 1 < 0 |
9 |
|
0lt1 |
⊢ 0 < 1 |
10 |
|
0re |
⊢ 0 ∈ ℝ |
11 |
|
1re |
⊢ 1 ∈ ℝ |
12 |
3 10 11
|
lttri |
⊢ ( ( - 1 < 0 ∧ 0 < 1 ) → - 1 < 1 ) |
13 |
8 9 12
|
mp2an |
⊢ - 1 < 1 |
14 |
|
ltpnf |
⊢ ( 1 ∈ ℝ → 1 < +∞ ) |
15 |
11 14
|
ax-mp |
⊢ 1 < +∞ |
16 |
13 15
|
pm3.2i |
⊢ ( - 1 < 1 ∧ 1 < +∞ ) |
17 |
|
df-ioo |
⊢ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
18 |
|
df-ico |
⊢ [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
19 |
|
xrlenlt |
⊢ ( ( 1 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 1 ≤ 𝑤 ↔ ¬ 𝑤 < 1 ) ) |
20 |
|
xrlttr |
⊢ ( ( 𝑤 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝑤 < 1 ∧ 1 < +∞ ) → 𝑤 < +∞ ) ) |
21 |
|
xrltletr |
⊢ ( ( - 1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( ( - 1 < 1 ∧ 1 ≤ 𝑤 ) → - 1 < 𝑤 ) ) |
22 |
17 18 19 17 20 21
|
ixxun |
⊢ ( ( ( - 1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( - 1 < 1 ∧ 1 < +∞ ) ) → ( ( - 1 (,) 1 ) ∪ ( 1 [,) +∞ ) ) = ( - 1 (,) +∞ ) ) |
23 |
7 16 22
|
mp2an |
⊢ ( ( - 1 (,) 1 ) ∪ ( 1 [,) +∞ ) ) = ( - 1 (,) +∞ ) |
24 |
23
|
uneq2i |
⊢ ( ( -∞ (,] - 1 ) ∪ ( ( - 1 (,) 1 ) ∪ ( 1 [,) +∞ ) ) ) = ( ( -∞ (,] - 1 ) ∪ ( - 1 (,) +∞ ) ) |
25 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
26 |
25 4 6
|
3pm3.2i |
⊢ ( -∞ ∈ ℝ* ∧ - 1 ∈ ℝ* ∧ +∞ ∈ ℝ* ) |
27 |
|
mnflt |
⊢ ( - 1 ∈ ℝ → -∞ < - 1 ) |
28 |
|
ltpnf |
⊢ ( - 1 ∈ ℝ → - 1 < +∞ ) |
29 |
27 28
|
jca |
⊢ ( - 1 ∈ ℝ → ( -∞ < - 1 ∧ - 1 < +∞ ) ) |
30 |
3 29
|
ax-mp |
⊢ ( -∞ < - 1 ∧ - 1 < +∞ ) |
31 |
|
df-ioc |
⊢ (,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) |
32 |
|
xrltnle |
⊢ ( ( - 1 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( - 1 < 𝑤 ↔ ¬ 𝑤 ≤ - 1 ) ) |
33 |
|
xrlelttr |
⊢ ( ( 𝑤 ∈ ℝ* ∧ - 1 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝑤 ≤ - 1 ∧ - 1 < +∞ ) → 𝑤 < +∞ ) ) |
34 |
|
xrlttr |
⊢ ( ( -∞ ∈ ℝ* ∧ - 1 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( ( -∞ < - 1 ∧ - 1 < 𝑤 ) → -∞ < 𝑤 ) ) |
35 |
31 17 32 17 33 34
|
ixxun |
⊢ ( ( ( -∞ ∈ ℝ* ∧ - 1 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( -∞ < - 1 ∧ - 1 < +∞ ) ) → ( ( -∞ (,] - 1 ) ∪ ( - 1 (,) +∞ ) ) = ( -∞ (,) +∞ ) ) |
36 |
26 30 35
|
mp2an |
⊢ ( ( -∞ (,] - 1 ) ∪ ( - 1 (,) +∞ ) ) = ( -∞ (,) +∞ ) |
37 |
24 36
|
eqtri |
⊢ ( ( -∞ (,] - 1 ) ∪ ( ( - 1 (,) 1 ) ∪ ( 1 [,) +∞ ) ) ) = ( -∞ (,) +∞ ) |
38 |
|
ioomax |
⊢ ( -∞ (,) +∞ ) = ℝ |
39 |
2 37 38
|
3eqtri |
⊢ ( ( - 1 (,) 1 ) ∪ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) = ℝ |
40 |
39
|
difeq1i |
⊢ ( ( ( - 1 (,) 1 ) ∪ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) = ( ℝ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) |
41 |
|
difun2 |
⊢ ( ( ( - 1 (,) 1 ) ∪ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) = ( ( - 1 (,) 1 ) ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) |
42 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
43 |
|
difin2 |
⊢ ( ℝ ⊆ ℂ → ( ℝ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) = ( ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) ∩ ℝ ) ) |
44 |
42 43
|
ax-mp |
⊢ ( ℝ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) = ( ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) ∩ ℝ ) |
45 |
40 41 44
|
3eqtr3ri |
⊢ ( ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) ∩ ℝ ) = ( ( - 1 (,) 1 ) ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) |
46 |
1
|
ineq1i |
⊢ ( 𝐷 ∩ ℝ ) = ( ( ℂ ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) ∩ ℝ ) |
47 |
|
incom |
⊢ ( ( - 1 (,) 1 ) ∩ ( -∞ (,] - 1 ) ) = ( ( -∞ (,] - 1 ) ∩ ( - 1 (,) 1 ) ) |
48 |
31 17 32
|
ixxdisj |
⊢ ( ( -∞ ∈ ℝ* ∧ - 1 ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( ( -∞ (,] - 1 ) ∩ ( - 1 (,) 1 ) ) = ∅ ) |
49 |
25 4 5 48
|
mp3an |
⊢ ( ( -∞ (,] - 1 ) ∩ ( - 1 (,) 1 ) ) = ∅ |
50 |
47 49
|
eqtri |
⊢ ( ( - 1 (,) 1 ) ∩ ( -∞ (,] - 1 ) ) = ∅ |
51 |
17 18 19
|
ixxdisj |
⊢ ( ( - 1 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( - 1 (,) 1 ) ∩ ( 1 [,) +∞ ) ) = ∅ ) |
52 |
4 5 6 51
|
mp3an |
⊢ ( ( - 1 (,) 1 ) ∩ ( 1 [,) +∞ ) ) = ∅ |
53 |
50 52
|
pm3.2i |
⊢ ( ( ( - 1 (,) 1 ) ∩ ( -∞ (,] - 1 ) ) = ∅ ∧ ( ( - 1 (,) 1 ) ∩ ( 1 [,) +∞ ) ) = ∅ ) |
54 |
|
un00 |
⊢ ( ( ( ( - 1 (,) 1 ) ∩ ( -∞ (,] - 1 ) ) = ∅ ∧ ( ( - 1 (,) 1 ) ∩ ( 1 [,) +∞ ) ) = ∅ ) ↔ ( ( ( - 1 (,) 1 ) ∩ ( -∞ (,] - 1 ) ) ∪ ( ( - 1 (,) 1 ) ∩ ( 1 [,) +∞ ) ) ) = ∅ ) |
55 |
|
indi |
⊢ ( ( - 1 (,) 1 ) ∩ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) = ( ( ( - 1 (,) 1 ) ∩ ( -∞ (,] - 1 ) ) ∪ ( ( - 1 (,) 1 ) ∩ ( 1 [,) +∞ ) ) ) |
56 |
55
|
eqeq1i |
⊢ ( ( ( - 1 (,) 1 ) ∩ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) = ∅ ↔ ( ( ( - 1 (,) 1 ) ∩ ( -∞ (,] - 1 ) ) ∪ ( ( - 1 (,) 1 ) ∩ ( 1 [,) +∞ ) ) ) = ∅ ) |
57 |
|
disj3 |
⊢ ( ( ( - 1 (,) 1 ) ∩ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) = ∅ ↔ ( - 1 (,) 1 ) = ( ( - 1 (,) 1 ) ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) ) |
58 |
54 56 57
|
3bitr2i |
⊢ ( ( ( ( - 1 (,) 1 ) ∩ ( -∞ (,] - 1 ) ) = ∅ ∧ ( ( - 1 (,) 1 ) ∩ ( 1 [,) +∞ ) ) = ∅ ) ↔ ( - 1 (,) 1 ) = ( ( - 1 (,) 1 ) ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) ) |
59 |
53 58
|
mpbi |
⊢ ( - 1 (,) 1 ) = ( ( - 1 (,) 1 ) ∖ ( ( -∞ (,] - 1 ) ∪ ( 1 [,) +∞ ) ) ) |
60 |
45 46 59
|
3eqtr4i |
⊢ ( 𝐷 ∩ ℝ ) = ( - 1 (,) 1 ) |