Step |
Hyp |
Ref |
Expression |
1 |
|
dvasin.d |
|- D = ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) |
2 |
|
un12 |
|- ( ( -u 1 (,) 1 ) u. ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) = ( ( -oo (,] -u 1 ) u. ( ( -u 1 (,) 1 ) u. ( 1 [,) +oo ) ) ) |
3 |
|
neg1rr |
|- -u 1 e. RR |
4 |
3
|
rexri |
|- -u 1 e. RR* |
5 |
|
1xr |
|- 1 e. RR* |
6 |
|
pnfxr |
|- +oo e. RR* |
7 |
4 5 6
|
3pm3.2i |
|- ( -u 1 e. RR* /\ 1 e. RR* /\ +oo e. RR* ) |
8 |
|
neg1lt0 |
|- -u 1 < 0 |
9 |
|
0lt1 |
|- 0 < 1 |
10 |
|
0re |
|- 0 e. RR |
11 |
|
1re |
|- 1 e. RR |
12 |
3 10 11
|
lttri |
|- ( ( -u 1 < 0 /\ 0 < 1 ) -> -u 1 < 1 ) |
13 |
8 9 12
|
mp2an |
|- -u 1 < 1 |
14 |
|
ltpnf |
|- ( 1 e. RR -> 1 < +oo ) |
15 |
11 14
|
ax-mp |
|- 1 < +oo |
16 |
13 15
|
pm3.2i |
|- ( -u 1 < 1 /\ 1 < +oo ) |
17 |
|
df-ioo |
|- (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) |
18 |
|
df-ico |
|- [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) |
19 |
|
xrlenlt |
|- ( ( 1 e. RR* /\ w e. RR* ) -> ( 1 <_ w <-> -. w < 1 ) ) |
20 |
|
xrlttr |
|- ( ( w e. RR* /\ 1 e. RR* /\ +oo e. RR* ) -> ( ( w < 1 /\ 1 < +oo ) -> w < +oo ) ) |
21 |
|
xrltletr |
|- ( ( -u 1 e. RR* /\ 1 e. RR* /\ w e. RR* ) -> ( ( -u 1 < 1 /\ 1 <_ w ) -> -u 1 < w ) ) |
22 |
17 18 19 17 20 21
|
ixxun |
|- ( ( ( -u 1 e. RR* /\ 1 e. RR* /\ +oo e. RR* ) /\ ( -u 1 < 1 /\ 1 < +oo ) ) -> ( ( -u 1 (,) 1 ) u. ( 1 [,) +oo ) ) = ( -u 1 (,) +oo ) ) |
23 |
7 16 22
|
mp2an |
|- ( ( -u 1 (,) 1 ) u. ( 1 [,) +oo ) ) = ( -u 1 (,) +oo ) |
24 |
23
|
uneq2i |
|- ( ( -oo (,] -u 1 ) u. ( ( -u 1 (,) 1 ) u. ( 1 [,) +oo ) ) ) = ( ( -oo (,] -u 1 ) u. ( -u 1 (,) +oo ) ) |
25 |
|
mnfxr |
|- -oo e. RR* |
26 |
25 4 6
|
3pm3.2i |
|- ( -oo e. RR* /\ -u 1 e. RR* /\ +oo e. RR* ) |
27 |
|
mnflt |
|- ( -u 1 e. RR -> -oo < -u 1 ) |
28 |
|
ltpnf |
|- ( -u 1 e. RR -> -u 1 < +oo ) |
29 |
27 28
|
jca |
|- ( -u 1 e. RR -> ( -oo < -u 1 /\ -u 1 < +oo ) ) |
30 |
3 29
|
ax-mp |
|- ( -oo < -u 1 /\ -u 1 < +oo ) |
31 |
|
df-ioc |
|- (,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z <_ y ) } ) |
32 |
|
xrltnle |
|- ( ( -u 1 e. RR* /\ w e. RR* ) -> ( -u 1 < w <-> -. w <_ -u 1 ) ) |
33 |
|
xrlelttr |
|- ( ( w e. RR* /\ -u 1 e. RR* /\ +oo e. RR* ) -> ( ( w <_ -u 1 /\ -u 1 < +oo ) -> w < +oo ) ) |
34 |
|
xrlttr |
|- ( ( -oo e. RR* /\ -u 1 e. RR* /\ w e. RR* ) -> ( ( -oo < -u 1 /\ -u 1 < w ) -> -oo < w ) ) |
35 |
31 17 32 17 33 34
|
ixxun |
|- ( ( ( -oo e. RR* /\ -u 1 e. RR* /\ +oo e. RR* ) /\ ( -oo < -u 1 /\ -u 1 < +oo ) ) -> ( ( -oo (,] -u 1 ) u. ( -u 1 (,) +oo ) ) = ( -oo (,) +oo ) ) |
36 |
26 30 35
|
mp2an |
|- ( ( -oo (,] -u 1 ) u. ( -u 1 (,) +oo ) ) = ( -oo (,) +oo ) |
37 |
24 36
|
eqtri |
|- ( ( -oo (,] -u 1 ) u. ( ( -u 1 (,) 1 ) u. ( 1 [,) +oo ) ) ) = ( -oo (,) +oo ) |
38 |
|
ioomax |
|- ( -oo (,) +oo ) = RR |
39 |
2 37 38
|
3eqtri |
|- ( ( -u 1 (,) 1 ) u. ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) = RR |
40 |
39
|
difeq1i |
|- ( ( ( -u 1 (,) 1 ) u. ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) = ( RR \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) |
41 |
|
difun2 |
|- ( ( ( -u 1 (,) 1 ) u. ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) = ( ( -u 1 (,) 1 ) \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) |
42 |
|
ax-resscn |
|- RR C_ CC |
43 |
|
difin2 |
|- ( RR C_ CC -> ( RR \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) = ( ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) i^i RR ) ) |
44 |
42 43
|
ax-mp |
|- ( RR \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) = ( ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) i^i RR ) |
45 |
40 41 44
|
3eqtr3ri |
|- ( ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) i^i RR ) = ( ( -u 1 (,) 1 ) \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) |
46 |
1
|
ineq1i |
|- ( D i^i RR ) = ( ( CC \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) i^i RR ) |
47 |
|
incom |
|- ( ( -u 1 (,) 1 ) i^i ( -oo (,] -u 1 ) ) = ( ( -oo (,] -u 1 ) i^i ( -u 1 (,) 1 ) ) |
48 |
31 17 32
|
ixxdisj |
|- ( ( -oo e. RR* /\ -u 1 e. RR* /\ 1 e. RR* ) -> ( ( -oo (,] -u 1 ) i^i ( -u 1 (,) 1 ) ) = (/) ) |
49 |
25 4 5 48
|
mp3an |
|- ( ( -oo (,] -u 1 ) i^i ( -u 1 (,) 1 ) ) = (/) |
50 |
47 49
|
eqtri |
|- ( ( -u 1 (,) 1 ) i^i ( -oo (,] -u 1 ) ) = (/) |
51 |
17 18 19
|
ixxdisj |
|- ( ( -u 1 e. RR* /\ 1 e. RR* /\ +oo e. RR* ) -> ( ( -u 1 (,) 1 ) i^i ( 1 [,) +oo ) ) = (/) ) |
52 |
4 5 6 51
|
mp3an |
|- ( ( -u 1 (,) 1 ) i^i ( 1 [,) +oo ) ) = (/) |
53 |
50 52
|
pm3.2i |
|- ( ( ( -u 1 (,) 1 ) i^i ( -oo (,] -u 1 ) ) = (/) /\ ( ( -u 1 (,) 1 ) i^i ( 1 [,) +oo ) ) = (/) ) |
54 |
|
un00 |
|- ( ( ( ( -u 1 (,) 1 ) i^i ( -oo (,] -u 1 ) ) = (/) /\ ( ( -u 1 (,) 1 ) i^i ( 1 [,) +oo ) ) = (/) ) <-> ( ( ( -u 1 (,) 1 ) i^i ( -oo (,] -u 1 ) ) u. ( ( -u 1 (,) 1 ) i^i ( 1 [,) +oo ) ) ) = (/) ) |
55 |
|
indi |
|- ( ( -u 1 (,) 1 ) i^i ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) = ( ( ( -u 1 (,) 1 ) i^i ( -oo (,] -u 1 ) ) u. ( ( -u 1 (,) 1 ) i^i ( 1 [,) +oo ) ) ) |
56 |
55
|
eqeq1i |
|- ( ( ( -u 1 (,) 1 ) i^i ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) = (/) <-> ( ( ( -u 1 (,) 1 ) i^i ( -oo (,] -u 1 ) ) u. ( ( -u 1 (,) 1 ) i^i ( 1 [,) +oo ) ) ) = (/) ) |
57 |
|
disj3 |
|- ( ( ( -u 1 (,) 1 ) i^i ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) = (/) <-> ( -u 1 (,) 1 ) = ( ( -u 1 (,) 1 ) \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) ) |
58 |
54 56 57
|
3bitr2i |
|- ( ( ( ( -u 1 (,) 1 ) i^i ( -oo (,] -u 1 ) ) = (/) /\ ( ( -u 1 (,) 1 ) i^i ( 1 [,) +oo ) ) = (/) ) <-> ( -u 1 (,) 1 ) = ( ( -u 1 (,) 1 ) \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) ) |
59 |
53 58
|
mpbi |
|- ( -u 1 (,) 1 ) = ( ( -u 1 (,) 1 ) \ ( ( -oo (,] -u 1 ) u. ( 1 [,) +oo ) ) ) |
60 |
45 46 59
|
3eqtr4i |
|- ( D i^i RR ) = ( -u 1 (,) 1 ) |