Metamath Proof Explorer


Theorem asinlem

Description: The argument to the logarithm in df-asin is always nonzero. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion asinlem AiA+1A20

Proof

Step Hyp Ref Expression
1 ax-icn i
2 mulcl iAiA
3 1 2 mpan AiA
4 ax-1cn 1
5 sqcl AA2
6 subcl 1A21A2
7 4 5 6 sylancr A1A2
8 7 sqrtcld A1A2
9 3 8 subnegd AiA1A2=iA+1A2
10 8 negcld A1A2
11 0ne1 01
12 0cnd A0
13 1cnd A1
14 subcan2 01A20A2=1A20=1
15 14 necon3bid 01A20A21A201
16 12 13 5 15 syl3anc A0A21A201
17 11 16 mpbiri A0A21A2
18 sqmul iAiA2=i2A2
19 1 18 mpan AiA2=i2A2
20 i2 i2=1
21 20 oveq1i i2A2=-1A2
22 5 mulm1d A-1A2=A2
23 21 22 eqtrid Ai2A2=A2
24 19 23 eqtrd AiA2=A2
25 df-neg A2=0A2
26 24 25 eqtrdi AiA2=0A2
27 sqneg 1A21A22=1A22
28 8 27 syl A1A22=1A22
29 7 sqsqrtd A1A22=1A2
30 28 29 eqtrd A1A22=1A2
31 17 26 30 3netr4d AiA21A22
32 oveq1 iA=1A2iA2=1A22
33 32 necon3i iA21A22iA1A2
34 31 33 syl AiA1A2
35 3 10 34 subne0d AiA1A20
36 9 35 eqnetrrd AiA+1A20