Metamath Proof Explorer


Theorem atanrecl

Description: The arctangent function is real for all real inputs. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion atanrecl AarctanA

Proof

Step Hyp Ref Expression
1 simpr AA=0A=0
2 1 fveq2d AA=0arctanA=arctan0
3 atan0 arctan0=0
4 0re 0
5 3 4 eqeltri arctan0
6 2 5 eqeltrdi AA=0arctanA
7 atanre AAdomarctan
8 7 adantr AA0Adomarctan
9 atancl AdomarctanarctanA
10 8 9 syl AA0arctanA
11 simpl AA0A
12 11 recnd AA0A
13 rere AA=A
14 13 adantr AA0A=A
15 simpr AA0A0
16 14 15 eqnetrd AA0A0
17 atancj AA0AdomarctanarctanA=arctanA
18 12 16 17 syl2anc AA0AdomarctanarctanA=arctanA
19 18 simprd AA0arctanA=arctanA
20 cjre AA=A
21 20 adantr AA0A=A
22 21 fveq2d AA0arctanA=arctanA
23 19 22 eqtrd AA0arctanA=arctanA
24 10 23 cjrebd AA0arctanA
25 6 24 pm2.61dane AarctanA