Metamath Proof Explorer


Theorem atcmp

Description: If two atoms are comparable, they are equal. ( atsseq analog.) (Contributed by NM, 13-Oct-2011)

Ref Expression
Hypotheses atcmp.l ˙=K
atcmp.a A=AtomsK
Assertion atcmp KAtLatPAQAP˙QP=Q

Proof

Step Hyp Ref Expression
1 atcmp.l ˙=K
2 atcmp.a A=AtomsK
3 atlpos KAtLatKPoset
4 3 3ad2ant1 KAtLatPAQAKPoset
5 eqid BaseK=BaseK
6 5 2 atbase PAPBaseK
7 6 3ad2ant2 KAtLatPAQAPBaseK
8 5 2 atbase QAQBaseK
9 8 3ad2ant3 KAtLatPAQAQBaseK
10 eqid 0.K=0.K
11 5 10 atl0cl KAtLat0.KBaseK
12 11 3ad2ant1 KAtLatPAQA0.KBaseK
13 eqid K=K
14 10 13 2 atcvr0 KAtLatPA0.KKP
15 14 3adant3 KAtLatPAQA0.KKP
16 10 13 2 atcvr0 KAtLatQA0.KKQ
17 16 3adant2 KAtLatPAQA0.KKQ
18 5 1 13 cvrcmp KPosetPBaseKQBaseK0.KBaseK0.KKP0.KKQP˙QP=Q
19 4 7 9 12 15 17 18 syl132anc KAtLatPAQAP˙QP=Q