Metamath Proof Explorer


Theorem atmod4i1

Description: Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 10-Jun-2012) (Revised by Mario Carneiro, 10-May-2013)

Ref Expression
Hypotheses atmod.b B=BaseK
atmod.l ˙=K
atmod.j ˙=joinK
atmod.m ˙=meetK
atmod.a A=AtomsK
Assertion atmod4i1 KHLPAXBYBP˙YX˙Y˙P=X˙P˙Y

Proof

Step Hyp Ref Expression
1 atmod.b B=BaseK
2 atmod.l ˙=K
3 atmod.j ˙=joinK
4 atmod.m ˙=meetK
5 atmod.a A=AtomsK
6 hllat KHLKLat
7 6 3ad2ant1 KHLPAXBYBP˙YKLat
8 simp22 KHLPAXBYBP˙YXB
9 simp23 KHLPAXBYBP˙YYB
10 1 4 latmcl KLatXBYBX˙YB
11 7 8 9 10 syl3anc KHLPAXBYBP˙YX˙YB
12 simp21 KHLPAXBYBP˙YPA
13 1 5 atbase PAPB
14 12 13 syl KHLPAXBYBP˙YPB
15 1 3 latjcom KLatX˙YBPBX˙Y˙P=P˙X˙Y
16 7 11 14 15 syl3anc KHLPAXBYBP˙YX˙Y˙P=P˙X˙Y
17 1 2 3 4 5 atmod1i1 KHLPAXBYBP˙YP˙X˙Y=P˙X˙Y
18 1 3 latjcom KLatPBXBP˙X=X˙P
19 7 14 8 18 syl3anc KHLPAXBYBP˙YP˙X=X˙P
20 19 oveq1d KHLPAXBYBP˙YP˙X˙Y=X˙P˙Y
21 16 17 20 3eqtrd KHLPAXBYBP˙YX˙Y˙P=X˙P˙Y