Metamath Proof Explorer


Theorem avgle2

Description: Ordering property for average. (Contributed by Jeff Hankins, 15-Sep-2013) (Revised by Mario Carneiro, 28-May-2014)

Ref Expression
Assertion avgle2 ABABA+B2B

Proof

Step Hyp Ref Expression
1 avglt1 BAB<AB<B+A2
2 1 ancoms ABB<AB<B+A2
3 recn AA
4 recn BB
5 addcom ABA+B=B+A
6 3 4 5 syl2an ABA+B=B+A
7 6 oveq1d ABA+B2=B+A2
8 7 breq2d ABB<A+B2B<B+A2
9 2 8 bitr4d ABB<AB<A+B2
10 9 notbid AB¬B<A¬B<A+B2
11 lenlt ABAB¬B<A
12 readdcl ABA+B
13 rehalfcl A+BA+B2
14 12 13 syl ABA+B2
15 lenlt A+B2BA+B2B¬B<A+B2
16 14 15 sylancom ABA+B2B¬B<A+B2
17 10 11 16 3bitr4d ABABA+B2B