Metamath Proof Explorer


Theorem axcgrrflx

Description: A is as far from B as B is from A . Axiom A1 of Schwabhauser p. 10. (Contributed by Scott Fenton, 3-Jun-2013)

Ref Expression
Assertion axcgrrflx NA𝔼NB𝔼NABCgrBA

Proof

Step Hyp Ref Expression
1 fveecn A𝔼Ni1NAi
2 fveecn B𝔼Ni1NBi
3 sqsubswap AiBiAiBi2=BiAi2
4 1 2 3 syl2an A𝔼Ni1NB𝔼Ni1NAiBi2=BiAi2
5 4 anandirs A𝔼NB𝔼Ni1NAiBi2=BiAi2
6 5 sumeq2dv A𝔼NB𝔼Ni=1NAiBi2=i=1NBiAi2
7 id A𝔼NB𝔼NA𝔼NB𝔼N
8 simpr A𝔼NB𝔼NB𝔼N
9 simpl A𝔼NB𝔼NA𝔼N
10 brcgr A𝔼NB𝔼NB𝔼NA𝔼NABCgrBAi=1NAiBi2=i=1NBiAi2
11 7 8 9 10 syl12anc A𝔼NB𝔼NABCgrBAi=1NAiBi2=i=1NBiAi2
12 6 11 mpbird A𝔼NB𝔼NABCgrBA
13 12 3adant1 NA𝔼NB𝔼NABCgrBA