Description: Alternate version of the Tarski-Grothendieck Axiom. ax-cc is used to derive this version. (Contributed by NM, 26-Mar-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | axgroth3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axgroth2 | |
|
2 | ssid | |
|
3 | sseq1 | |
|
4 | elequ1 | |
|
5 | 3 4 | imbi12d | |
6 | 5 | spvv | |
7 | 2 6 | mpi | |
8 | 7 | reximi | |
9 | eluni2 | |
|
10 | 8 9 | sylibr | |
11 | 10 | adantl | |
12 | 11 | ralimi | |
13 | dfss3 | |
|
14 | 12 13 | sylibr | |
15 | vex | |
|
16 | grothac | |
|
17 | 15 16 | eleqtrri | |
18 | vex | |
|
19 | 18 16 | eleqtrri | |
20 | ne0i | |
|
21 | 15 | dominf | |
22 | 20 21 | sylan | |
23 | infdif2 | |
|
24 | 17 19 22 23 | mp3an12i | |
25 | 24 | orbi1d | |
26 | 25 | imbi2d | |
27 | 26 | albidv | |
28 | 14 27 | sylan2 | |
29 | 28 | pm5.32i | |
30 | df-3an | |
|
31 | df-3an | |
|
32 | 29 30 31 | 3bitr4i | |
33 | 32 | exbii | |
34 | 1 33 | mpbir | |