Metamath Proof Explorer


Theorem axpownd

Description: A version of the Axiom of Power Sets with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 4-Jan-2002) (New usage is discouraged.)

Ref Expression
Assertion axpownd ¬x=yxyxzxyyxzyx

Proof

Step Hyp Ref Expression
1 axpowndlem4 ¬yy=x¬yy=z¬x=yxyxzxyyxzyx
2 axpowndlem1 xx=y¬x=yxyxzxyyxzyx
3 2 aecoms yy=x¬x=yxyxzxyyxzyx
4 2 a1d xx=yyy=z¬x=yxyxzxyyxzyx
5 nfnae y¬xx=y
6 nfae yyy=z
7 5 6 nfan y¬xx=yyy=z
8 el wxw
9 nfcvf2 ¬xx=y_yx
10 nfcvd ¬xx=y_yw
11 9 10 nfeld ¬xx=yyxw
12 elequ2 w=yxwxy
13 12 a1i ¬xx=yw=yxwxy
14 5 11 13 cbvexd ¬xx=ywxwyxy
15 8 14 mpbii ¬xx=yyxy
16 15 19.8ad ¬xx=yxyxy
17 df-ex xyxy¬x¬yxy
18 16 17 sylib ¬xx=y¬x¬yxy
19 18 adantr ¬xx=yyy=z¬x¬yxy
20 biidd yy=z¬xy¬xy
21 20 dral1 yy=zy¬xyz¬xy
22 alnex y¬xy¬yxy
23 alnex z¬xy¬zxy
24 21 22 23 3bitr3g yy=z¬yxy¬zxy
25 nd2 yy=z¬yxz
26 mtt ¬yxz¬zxyzxyyxz
27 25 26 syl yy=z¬zxyzxyyxz
28 24 27 bitrd yy=z¬yxyzxyyxz
29 28 dral2 yy=zx¬yxyxzxyyxz
30 29 adantl ¬xx=yyy=zx¬yxyxzxyyxz
31 19 30 mtbid ¬xx=yyy=z¬xzxyyxz
32 31 pm2.21d ¬xx=yyy=zxzxyyxzyx
33 7 32 alrimi ¬xx=yyy=zyxzxyyxzyx
34 33 19.8ad ¬xx=yyy=zxyxzxyyxzyx
35 34 a1d ¬xx=yyy=z¬x=yxyxzxyyxzyx
36 35 ex ¬xx=yyy=z¬x=yxyxzxyyxzyx
37 4 36 pm2.61i yy=z¬x=yxyxzxyyxzyx
38 1 3 37 pm2.61ii ¬x=yxyxzxyyxzyx