Description: A version of the Axiom of Power Sets with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 4-Jan-2002) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | axpownd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axpowndlem4 | |
|
2 | axpowndlem1 | |
|
3 | 2 | aecoms | |
4 | 2 | a1d | |
5 | nfnae | |
|
6 | nfae | |
|
7 | 5 6 | nfan | |
8 | el | |
|
9 | nfcvf2 | |
|
10 | nfcvd | |
|
11 | 9 10 | nfeld | |
12 | elequ2 | |
|
13 | 12 | a1i | |
14 | 5 11 13 | cbvexd | |
15 | 8 14 | mpbii | |
16 | 15 | 19.8ad | |
17 | df-ex | |
|
18 | 16 17 | sylib | |
19 | 18 | adantr | |
20 | biidd | |
|
21 | 20 | dral1 | |
22 | alnex | |
|
23 | alnex | |
|
24 | 21 22 23 | 3bitr3g | |
25 | nd2 | |
|
26 | mtt | |
|
27 | 25 26 | syl | |
28 | 24 27 | bitrd | |
29 | 28 | dral2 | |
30 | 29 | adantl | |
31 | 19 30 | mtbid | |
32 | 31 | pm2.21d | |
33 | 7 32 | alrimi | |
34 | 33 | 19.8ad | |
35 | 34 | a1d | |
36 | 35 | ex | |
37 | 4 36 | pm2.61i | |
38 | 1 3 37 | pm2.61ii | |