Metamath Proof Explorer


Theorem axrep6g

Description: axrep6 in class notation. It is equivalent to both ax-rep and abrexexg , providing a direct link between the two. (Contributed by SN, 11-Dec-2024)

Ref Expression
Assertion axrep6g AVx*yψy|xAψV

Proof

Step Hyp Ref Expression
1 rexeq z=AxzψxAψ
2 1 abbidv z=Ay|xzψ=y|xAψ
3 2 eleq1d z=Ay|xzψVy|xAψV
4 3 imbi2d z=Ax*yψy|xzψVx*yψy|xAψV
5 axrep6 x*yψwyywxzψ
6 abbi yywxzψy|yw=y|xzψ
7 abid2 y|yw=w
8 vex wV
9 7 8 eqeltri y|ywV
10 6 9 eqeltrrdi yywxzψy|xzψV
11 10 exlimiv wyywxzψy|xzψV
12 5 11 syl x*yψy|xzψV
13 4 12 vtoclg AVx*yψy|xAψV
14 13 imp AVx*yψy|xAψV