Metamath Proof Explorer


Theorem bcp1m1

Description: Compute the binomial coefficient of ( N + 1 ) over ( N - 1 ) (Contributed by Scott Fenton, 11-May-2014) (Revised by Mario Carneiro, 22-May-2014)

Ref Expression
Assertion bcp1m1 N0(N+1N1)=N+1 N2

Proof

Step Hyp Ref Expression
1 peano2nn0 N0N+10
2 nn0z N0N
3 peano2zm NN1
4 2 3 syl N0N1
5 bccmpl N+10N1(N+1N1)=(N+1N+1-N1)
6 1 4 5 syl2anc N0(N+1N1)=(N+1N+1-N1)
7 nn0cn N0N
8 1cnd N01
9 7 8 8 pnncand N0N+1-N1=1+1
10 df-2 2=1+1
11 9 10 eqtr4di N0N+1-N1=2
12 11 oveq2d N0(N+1N+1-N1)=(N+12)
13 bcn2 N+10(N+12)=N+1N+1-12
14 1 13 syl N0(N+12)=N+1N+1-12
15 ax-1cn 1
16 pncan N1N+1-1=N
17 7 15 16 sylancl N0N+1-1=N
18 17 oveq2d N0N+1N+1-1=N+1 N
19 18 oveq1d N0N+1N+1-12=N+1 N2
20 14 19 eqtrd N0(N+12)=N+1 N2
21 12 20 eqtrd N0(N+1N+1-N1)=N+1 N2
22 6 21 eqtrd N0(N+1N1)=N+1 N2