Metamath Proof Explorer


Theorem bgoldbachlt

Description: The binary Goldbach conjecture is valid for small even numbers (i.e. for all even numbers less than or equal to a fixed big m ). This is verified for m = 4 x 10^18 by Oliveira e Silva, see ax-bgbltosilva . (Contributed by AV, 3-Aug-2020) (Revised by AV, 9-Sep-2021)

Ref Expression
Assertion bgoldbachlt m41018mnEven4<nn<mnGoldbachEven

Proof

Step Hyp Ref Expression
1 4nn 4
2 10nn 10
3 1nn0 10
4 8nn0 80
5 3 4 deccl 180
6 nnexpcl 101801018
7 2 5 6 mp2an 1018
8 1 7 nnmulcli 41018
9 id 4101841018
10 breq2 m=4101841018m4101841018
11 breq2 m=41018n<mn<41018
12 11 anbi2d m=410184<nn<m4<nn<41018
13 12 imbi1d m=410184<nn<mnGoldbachEven4<nn<41018nGoldbachEven
14 13 ralbidv m=41018nEven4<nn<mnGoldbachEvennEven4<nn<41018nGoldbachEven
15 10 14 anbi12d m=4101841018mnEven4<nn<mnGoldbachEven4101841018nEven4<nn<41018nGoldbachEven
16 15 adantl 41018m=4101841018mnEven4<nn<mnGoldbachEven4101841018nEven4<nn<41018nGoldbachEven
17 nnre 4101841018
18 17 leidd 410184101841018
19 simplr 41018nEven4<nn<41018nEven
20 simprl 41018nEven4<nn<410184<n
21 evenz nEvenn
22 21 zred nEvenn
23 ltle n41018n<41018n41018
24 22 17 23 syl2anr 41018nEvenn<41018n41018
25 24 a1d 41018nEven4<nn<41018n41018
26 25 imp32 41018nEven4<nn<41018n41018
27 ax-bgbltosilva nEven4<nn41018nGoldbachEven
28 19 20 26 27 syl3anc 41018nEven4<nn<41018nGoldbachEven
29 28 ex 41018nEven4<nn<41018nGoldbachEven
30 29 ralrimiva 41018nEven4<nn<41018nGoldbachEven
31 18 30 jca 410184101841018nEven4<nn<41018nGoldbachEven
32 9 16 31 rspcedvd 41018m41018mnEven4<nn<mnGoldbachEven
33 8 32 ax-mp m41018mnEven4<nn<mnGoldbachEven