Metamath Proof Explorer


Theorem bgoldbachlt

Description: The binary Goldbach conjecture is valid for small even numbers (i.e. for all even numbers less than or equal to a fixed big m ). This is verified for m = 4 x 10^18 by Oliveira e Silva, see ax-bgbltosilva . (Contributed by AV, 3-Aug-2020) (Revised by AV, 9-Sep-2021)

Ref Expression
Assertion bgoldbachlt m 4 10 18 m n Even 4 < n n < m n GoldbachEven

Proof

Step Hyp Ref Expression
1 4nn 4
2 10nn 10
3 1nn0 1 0
4 8nn0 8 0
5 3 4 deccl 18 0
6 nnexpcl 10 18 0 10 18
7 2 5 6 mp2an 10 18
8 1 7 nnmulcli 4 10 18
9 id 4 10 18 4 10 18
10 breq2 m = 4 10 18 4 10 18 m 4 10 18 4 10 18
11 breq2 m = 4 10 18 n < m n < 4 10 18
12 11 anbi2d m = 4 10 18 4 < n n < m 4 < n n < 4 10 18
13 12 imbi1d m = 4 10 18 4 < n n < m n GoldbachEven 4 < n n < 4 10 18 n GoldbachEven
14 13 ralbidv m = 4 10 18 n Even 4 < n n < m n GoldbachEven n Even 4 < n n < 4 10 18 n GoldbachEven
15 10 14 anbi12d m = 4 10 18 4 10 18 m n Even 4 < n n < m n GoldbachEven 4 10 18 4 10 18 n Even 4 < n n < 4 10 18 n GoldbachEven
16 15 adantl 4 10 18 m = 4 10 18 4 10 18 m n Even 4 < n n < m n GoldbachEven 4 10 18 4 10 18 n Even 4 < n n < 4 10 18 n GoldbachEven
17 nnre 4 10 18 4 10 18
18 17 leidd 4 10 18 4 10 18 4 10 18
19 simplr 4 10 18 n Even 4 < n n < 4 10 18 n Even
20 simprl 4 10 18 n Even 4 < n n < 4 10 18 4 < n
21 evenz n Even n
22 21 zred n Even n
23 ltle n 4 10 18 n < 4 10 18 n 4 10 18
24 22 17 23 syl2anr 4 10 18 n Even n < 4 10 18 n 4 10 18
25 24 a1d 4 10 18 n Even 4 < n n < 4 10 18 n 4 10 18
26 25 imp32 4 10 18 n Even 4 < n n < 4 10 18 n 4 10 18
27 ax-bgbltosilva n Even 4 < n n 4 10 18 n GoldbachEven
28 19 20 26 27 syl3anc 4 10 18 n Even 4 < n n < 4 10 18 n GoldbachEven
29 28 ex 4 10 18 n Even 4 < n n < 4 10 18 n GoldbachEven
30 29 ralrimiva 4 10 18 n Even 4 < n n < 4 10 18 n GoldbachEven
31 18 30 jca 4 10 18 4 10 18 4 10 18 n Even 4 < n n < 4 10 18 n GoldbachEven
32 9 16 31 rspcedvd 4 10 18 m 4 10 18 m n Even 4 < n n < m n GoldbachEven
33 8 32 ax-mp m 4 10 18 m n Even 4 < n n < m n GoldbachEven