Step |
Hyp |
Ref |
Expression |
1 |
|
4nn |
⊢ 4 ∈ ℕ |
2 |
|
10nn |
⊢ ; 1 0 ∈ ℕ |
3 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
4 |
|
8nn0 |
⊢ 8 ∈ ℕ0 |
5 |
3 4
|
deccl |
⊢ ; 1 8 ∈ ℕ0 |
6 |
|
nnexpcl |
⊢ ( ( ; 1 0 ∈ ℕ ∧ ; 1 8 ∈ ℕ0 ) → ( ; 1 0 ↑ ; 1 8 ) ∈ ℕ ) |
7 |
2 5 6
|
mp2an |
⊢ ( ; 1 0 ↑ ; 1 8 ) ∈ ℕ |
8 |
1 7
|
nnmulcli |
⊢ ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ∈ ℕ |
9 |
|
id |
⊢ ( ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ∈ ℕ → ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ∈ ℕ ) |
10 |
|
breq2 |
⊢ ( 𝑚 = ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) → ( ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ≤ 𝑚 ↔ ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ≤ ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ) ) |
11 |
|
breq2 |
⊢ ( 𝑚 = ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) → ( 𝑛 < 𝑚 ↔ 𝑛 < ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ) ) |
12 |
11
|
anbi2d |
⊢ ( 𝑚 = ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) → ( ( 4 < 𝑛 ∧ 𝑛 < 𝑚 ) ↔ ( 4 < 𝑛 ∧ 𝑛 < ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ) ) ) |
13 |
12
|
imbi1d |
⊢ ( 𝑚 = ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) → ( ( ( 4 < 𝑛 ∧ 𝑛 < 𝑚 ) → 𝑛 ∈ GoldbachEven ) ↔ ( ( 4 < 𝑛 ∧ 𝑛 < ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ) → 𝑛 ∈ GoldbachEven ) ) ) |
14 |
13
|
ralbidv |
⊢ ( 𝑚 = ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) → ( ∀ 𝑛 ∈ Even ( ( 4 < 𝑛 ∧ 𝑛 < 𝑚 ) → 𝑛 ∈ GoldbachEven ) ↔ ∀ 𝑛 ∈ Even ( ( 4 < 𝑛 ∧ 𝑛 < ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ) → 𝑛 ∈ GoldbachEven ) ) ) |
15 |
10 14
|
anbi12d |
⊢ ( 𝑚 = ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) → ( ( ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ≤ 𝑚 ∧ ∀ 𝑛 ∈ Even ( ( 4 < 𝑛 ∧ 𝑛 < 𝑚 ) → 𝑛 ∈ GoldbachEven ) ) ↔ ( ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ≤ ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ∧ ∀ 𝑛 ∈ Even ( ( 4 < 𝑛 ∧ 𝑛 < ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ) → 𝑛 ∈ GoldbachEven ) ) ) ) |
16 |
15
|
adantl |
⊢ ( ( ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ∈ ℕ ∧ 𝑚 = ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ) → ( ( ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ≤ 𝑚 ∧ ∀ 𝑛 ∈ Even ( ( 4 < 𝑛 ∧ 𝑛 < 𝑚 ) → 𝑛 ∈ GoldbachEven ) ) ↔ ( ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ≤ ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ∧ ∀ 𝑛 ∈ Even ( ( 4 < 𝑛 ∧ 𝑛 < ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ) → 𝑛 ∈ GoldbachEven ) ) ) ) |
17 |
|
nnre |
⊢ ( ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ∈ ℕ → ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ∈ ℝ ) |
18 |
17
|
leidd |
⊢ ( ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ∈ ℕ → ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ≤ ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ) |
19 |
|
simplr |
⊢ ( ( ( ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ∈ ℕ ∧ 𝑛 ∈ Even ) ∧ ( 4 < 𝑛 ∧ 𝑛 < ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ) ) → 𝑛 ∈ Even ) |
20 |
|
simprl |
⊢ ( ( ( ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ∈ ℕ ∧ 𝑛 ∈ Even ) ∧ ( 4 < 𝑛 ∧ 𝑛 < ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ) ) → 4 < 𝑛 ) |
21 |
|
evenz |
⊢ ( 𝑛 ∈ Even → 𝑛 ∈ ℤ ) |
22 |
21
|
zred |
⊢ ( 𝑛 ∈ Even → 𝑛 ∈ ℝ ) |
23 |
|
ltle |
⊢ ( ( 𝑛 ∈ ℝ ∧ ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ∈ ℝ ) → ( 𝑛 < ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) → 𝑛 ≤ ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ) ) |
24 |
22 17 23
|
syl2anr |
⊢ ( ( ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ∈ ℕ ∧ 𝑛 ∈ Even ) → ( 𝑛 < ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) → 𝑛 ≤ ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ) ) |
25 |
24
|
a1d |
⊢ ( ( ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ∈ ℕ ∧ 𝑛 ∈ Even ) → ( 4 < 𝑛 → ( 𝑛 < ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) → 𝑛 ≤ ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ) ) ) |
26 |
25
|
imp32 |
⊢ ( ( ( ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ∈ ℕ ∧ 𝑛 ∈ Even ) ∧ ( 4 < 𝑛 ∧ 𝑛 < ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ) ) → 𝑛 ≤ ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ) |
27 |
|
ax-bgbltosilva |
⊢ ( ( 𝑛 ∈ Even ∧ 4 < 𝑛 ∧ 𝑛 ≤ ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ) → 𝑛 ∈ GoldbachEven ) |
28 |
19 20 26 27
|
syl3anc |
⊢ ( ( ( ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ∈ ℕ ∧ 𝑛 ∈ Even ) ∧ ( 4 < 𝑛 ∧ 𝑛 < ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ) ) → 𝑛 ∈ GoldbachEven ) |
29 |
28
|
ex |
⊢ ( ( ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ∈ ℕ ∧ 𝑛 ∈ Even ) → ( ( 4 < 𝑛 ∧ 𝑛 < ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ) → 𝑛 ∈ GoldbachEven ) ) |
30 |
29
|
ralrimiva |
⊢ ( ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ∈ ℕ → ∀ 𝑛 ∈ Even ( ( 4 < 𝑛 ∧ 𝑛 < ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ) → 𝑛 ∈ GoldbachEven ) ) |
31 |
18 30
|
jca |
⊢ ( ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ∈ ℕ → ( ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ≤ ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ∧ ∀ 𝑛 ∈ Even ( ( 4 < 𝑛 ∧ 𝑛 < ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ) → 𝑛 ∈ GoldbachEven ) ) ) |
32 |
9 16 31
|
rspcedvd |
⊢ ( ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ∈ ℕ → ∃ 𝑚 ∈ ℕ ( ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ≤ 𝑚 ∧ ∀ 𝑛 ∈ Even ( ( 4 < 𝑛 ∧ 𝑛 < 𝑚 ) → 𝑛 ∈ GoldbachEven ) ) ) |
33 |
8 32
|
ax-mp |
⊢ ∃ 𝑚 ∈ ℕ ( ( 4 · ( ; 1 0 ↑ ; 1 8 ) ) ≤ 𝑚 ∧ ∀ 𝑛 ∈ Even ( ( 4 < 𝑛 ∧ 𝑛 < 𝑚 ) → 𝑛 ∈ GoldbachEven ) ) |