Metamath Proof Explorer


Theorem bitsfi

Description: Every number is associated with a finite set of bits. (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Assertion bitsfi N 0 bits N Fin

Proof

Step Hyp Ref Expression
1 nn0re N 0 N
2 2re 2
3 2 a1i N 0 2
4 1lt2 1 < 2
5 4 a1i N 0 1 < 2
6 expnbnd N 2 1 < 2 m N < 2 m
7 1 3 5 6 syl3anc N 0 m N < 2 m
8 fzofi 0 ..^ m Fin
9 simpl N 0 m N < 2 m N 0
10 nn0uz 0 = 0
11 9 10 eleqtrdi N 0 m N < 2 m N 0
12 2nn 2
13 12 a1i N 0 m N < 2 m 2
14 simprl N 0 m N < 2 m m
15 14 nnnn0d N 0 m N < 2 m m 0
16 13 15 nnexpcld N 0 m N < 2 m 2 m
17 16 nnzd N 0 m N < 2 m 2 m
18 simprr N 0 m N < 2 m N < 2 m
19 elfzo2 N 0 ..^ 2 m N 0 2 m N < 2 m
20 11 17 18 19 syl3anbrc N 0 m N < 2 m N 0 ..^ 2 m
21 9 nn0zd N 0 m N < 2 m N
22 bitsfzo N m 0 N 0 ..^ 2 m bits N 0 ..^ m
23 21 15 22 syl2anc N 0 m N < 2 m N 0 ..^ 2 m bits N 0 ..^ m
24 20 23 mpbid N 0 m N < 2 m bits N 0 ..^ m
25 ssfi 0 ..^ m Fin bits N 0 ..^ m bits N Fin
26 8 24 25 sylancr N 0 m N < 2 m bits N Fin
27 7 26 rexlimddv N 0 bits N Fin