Metamath Proof Explorer


Theorem bj-elid6

Description: Characterization of the elements of the diagonal of a Cartesian square. (Contributed by BJ, 22-Jun-2019)

Ref Expression
Assertion bj-elid6 BIABA×A1stB=2ndB

Proof

Step Hyp Ref Expression
1 df-res IA=IA×V
2 1 elin2 BIABIBA×V
3 2 biancomi BIABA×VBI
4 bj-elid4 BA×VBI1stB=2ndB
5 4 pm5.32i BA×VBIBA×V1stB=2ndB
6 1st2nd2 BA×VB=1stB2ndB
7 6 pm4.71ri BA×VB=1stB2ndBBA×V
8 eleq1 B=1stB2ndBBA×V1stB2ndBA×V
9 8 adantl 1stB=2ndBB=1stB2ndBBA×V1stB2ndBA×V
10 simpl 1stBA2ndBV1stBA
11 10 a1i 1stB=2ndB1stBA2ndBV1stBA
12 eleq1 1stB=2ndB1stBA2ndBA
13 10 12 imbitrid 1stB=2ndB1stBA2ndBV2ndBA
14 11 13 jcad 1stB=2ndB1stBA2ndBV1stBA2ndBA
15 elex 2ndBA2ndBV
16 15 anim2i 1stBA2ndBA1stBA2ndBV
17 14 16 impbid1 1stB=2ndB1stBA2ndBV1stBA2ndBA
18 17 adantr 1stB=2ndBB=1stB2ndB1stBA2ndBV1stBA2ndBA
19 opelxp 1stB2ndBA×V1stBA2ndBV
20 opelxp 1stB2ndBA×A1stBA2ndBA
21 18 19 20 3bitr4g 1stB=2ndBB=1stB2ndB1stB2ndBA×V1stB2ndBA×A
22 eleq1 B=1stB2ndBBA×A1stB2ndBA×A
23 22 bicomd B=1stB2ndB1stB2ndBA×ABA×A
24 23 adantl 1stB=2ndBB=1stB2ndB1stB2ndBA×ABA×A
25 9 21 24 3bitrd 1stB=2ndBB=1stB2ndBBA×VBA×A
26 25 pm5.32da 1stB=2ndBB=1stB2ndBBA×VB=1stB2ndBBA×A
27 simpr B=1stB2ndBBA×ABA×A
28 1st2nd2 BA×AB=1stB2ndB
29 28 ancri BA×AB=1stB2ndBBA×A
30 27 29 impbii B=1stB2ndBBA×ABA×A
31 26 30 bitrdi 1stB=2ndBB=1stB2ndBBA×VBA×A
32 7 31 bitrid 1stB=2ndBBA×VBA×A
33 32 pm5.32ri BA×V1stB=2ndBBA×A1stB=2ndB
34 3 5 33 3bitri BIABA×A1stB=2ndB