Metamath Proof Explorer


Theorem bj-inftyexpiinj

Description: Injectivity of the parameterization inftyexpi . Remark: a more conceptual proof would use bj-inftyexpiinv and the fact that a function with a retraction is injective. (Contributed by BJ, 22-Jun-2019)

Ref Expression
Assertion bj-inftyexpiinj AππBππA=BinftyexpiA=inftyexpiB

Proof

Step Hyp Ref Expression
1 fveq2 A=BinftyexpiA=inftyexpiB
2 fveq2 inftyexpiA=inftyexpiB1stinftyexpiA=1stinftyexpiB
3 bj-inftyexpiinv Aππ1stinftyexpiA=A
4 3 adantr AππBππ1stinftyexpiA=A
5 4 eqeq1d AππBππ1stinftyexpiA=1stinftyexpiBA=1stinftyexpiB
6 5 biimpd AππBππ1stinftyexpiA=1stinftyexpiBA=1stinftyexpiB
7 bj-inftyexpiinv Bππ1stinftyexpiB=B
8 7 adantl AππBππ1stinftyexpiB=B
9 8 eqeq2d AππBππA=1stinftyexpiBA=B
10 6 9 sylibd AππBππ1stinftyexpiA=1stinftyexpiBA=B
11 2 10 syl5 AππBππinftyexpiA=inftyexpiBA=B
12 1 11 impbid2 AππBππA=BinftyexpiA=inftyexpiB