Metamath Proof Explorer


Theorem bj-minftyccb

Description: The class minfty is an extended complex number. (Contributed by BJ, 27-Jun-2019)

Ref Expression
Assertion bj-minftyccb -∞

Proof

Step Hyp Ref Expression
1 bj-ccinftyssccbar
2 df-bj-inftyexpi inftyexpi = x π π x
3 2 funmpt2 Fun inftyexpi
4 pire π
5 4 renegcli π
6 5 rexri π *
7 4 rexri π *
8 pipos 0 < π
9 0re 0
10 9 4 ltnegi 0 < π π < 0
11 8 10 mpbi π < 0
12 neg0 0 = 0
13 11 12 breqtri π < 0
14 5 9 4 lttri π < 0 0 < π π < π
15 13 8 14 mp2an π < π
16 ubioc1 π * π * π < π π π π
17 6 7 15 16 mp3an π π π
18 opex x V
19 18 2 dmmpti dom inftyexpi = π π
20 17 19 eleqtrri π dom inftyexpi
21 fvelrn Fun inftyexpi π dom inftyexpi inftyexpi π ran inftyexpi
22 3 20 21 mp2an inftyexpi π ran inftyexpi
23 df-bj-minfty -∞ = inftyexpi π
24 df-bj-ccinfty = ran inftyexpi
25 22 23 24 3eltr4i -∞
26 1 25 sselii -∞