Step |
Hyp |
Ref |
Expression |
1 |
|
bj-ccinftyssccbar |
⊢ ℂ∞ ⊆ ℂ̅ |
2 |
|
df-bj-inftyexpi |
⊢ +∞ei = ( 𝑥 ∈ ( - π (,] π ) ↦ ⟨ 𝑥 , ℂ ⟩ ) |
3 |
2
|
funmpt2 |
⊢ Fun +∞ei |
4 |
|
pire |
⊢ π ∈ ℝ |
5 |
4
|
renegcli |
⊢ - π ∈ ℝ |
6 |
5
|
rexri |
⊢ - π ∈ ℝ* |
7 |
4
|
rexri |
⊢ π ∈ ℝ* |
8 |
|
pipos |
⊢ 0 < π |
9 |
|
0re |
⊢ 0 ∈ ℝ |
10 |
9 4
|
ltnegi |
⊢ ( 0 < π ↔ - π < - 0 ) |
11 |
8 10
|
mpbi |
⊢ - π < - 0 |
12 |
|
neg0 |
⊢ - 0 = 0 |
13 |
11 12
|
breqtri |
⊢ - π < 0 |
14 |
5 9 4
|
lttri |
⊢ ( ( - π < 0 ∧ 0 < π ) → - π < π ) |
15 |
13 8 14
|
mp2an |
⊢ - π < π |
16 |
|
ubioc1 |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ* ∧ - π < π ) → π ∈ ( - π (,] π ) ) |
17 |
6 7 15 16
|
mp3an |
⊢ π ∈ ( - π (,] π ) |
18 |
|
opex |
⊢ ⟨ 𝑥 , ℂ ⟩ ∈ V |
19 |
18 2
|
dmmpti |
⊢ dom +∞ei = ( - π (,] π ) |
20 |
17 19
|
eleqtrri |
⊢ π ∈ dom +∞ei |
21 |
|
fvelrn |
⊢ ( ( Fun +∞ei ∧ π ∈ dom +∞ei ) → ( +∞ei ‘ π ) ∈ ran +∞ei ) |
22 |
3 20 21
|
mp2an |
⊢ ( +∞ei ‘ π ) ∈ ran +∞ei |
23 |
|
df-bj-minfty |
⊢ -∞ = ( +∞ei ‘ π ) |
24 |
|
df-bj-ccinfty |
⊢ ℂ∞ = ran +∞ei |
25 |
22 23 24
|
3eltr4i |
⊢ -∞ ∈ ℂ∞ |
26 |
1 25
|
sselii |
⊢ -∞ ∈ ℂ̅ |