Metamath Proof Explorer


Theorem bj-minftyccb

Description: The class minfty is an extended complex number. (Contributed by BJ, 27-Jun-2019)

Ref Expression
Assertion bj-minftyccb -∞ ∈ ℂ̅

Proof

Step Hyp Ref Expression
1 bj-ccinftyssccbar ⊆ ℂ̅
2 df-bj-inftyexpi +∞ei = ( 𝑥 ∈ ( - π (,] π ) ↦ ⟨ 𝑥 , ℂ ⟩ )
3 2 funmpt2 Fun +∞ei
4 pire π ∈ ℝ
5 4 renegcli - π ∈ ℝ
6 5 rexri - π ∈ ℝ*
7 4 rexri π ∈ ℝ*
8 pipos 0 < π
9 0re 0 ∈ ℝ
10 9 4 ltnegi ( 0 < π ↔ - π < - 0 )
11 8 10 mpbi - π < - 0
12 neg0 - 0 = 0
13 11 12 breqtri - π < 0
14 5 9 4 lttri ( ( - π < 0 ∧ 0 < π ) → - π < π )
15 13 8 14 mp2an - π < π
16 ubioc1 ( ( - π ∈ ℝ* ∧ π ∈ ℝ* ∧ - π < π ) → π ∈ ( - π (,] π ) )
17 6 7 15 16 mp3an π ∈ ( - π (,] π )
18 opex 𝑥 , ℂ ⟩ ∈ V
19 18 2 dmmpti dom +∞ei = ( - π (,] π )
20 17 19 eleqtrri π ∈ dom +∞ei
21 fvelrn ( ( Fun +∞ei ∧ π ∈ dom +∞ei ) → ( +∞ei ‘ π ) ∈ ran +∞ei )
22 3 20 21 mp2an ( +∞ei ‘ π ) ∈ ran +∞ei
23 df-bj-minfty -∞ = ( +∞ei ‘ π )
24 df-bj-ccinfty = ran +∞ei
25 22 23 24 3eltr4i -∞ ∈ ℂ
26 1 25 sselii -∞ ∈ ℂ̅