Description: The class minfty is an extended complex number. (Contributed by BJ, 27-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-minftyccb | ⊢ -∞ ∈ ℂ̅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-ccinftyssccbar | ⊢ ℂ∞ ⊆ ℂ̅ | |
| 2 | df-bj-inftyexpi | ⊢ +∞ei = ( 𝑥 ∈ ( - π (,] π ) ↦ 〈 𝑥 , ℂ 〉 ) | |
| 3 | 2 | funmpt2 | ⊢ Fun +∞ei |
| 4 | pire | ⊢ π ∈ ℝ | |
| 5 | 4 | renegcli | ⊢ - π ∈ ℝ |
| 6 | 5 | rexri | ⊢ - π ∈ ℝ* |
| 7 | 4 | rexri | ⊢ π ∈ ℝ* |
| 8 | pipos | ⊢ 0 < π | |
| 9 | 0re | ⊢ 0 ∈ ℝ | |
| 10 | 9 4 | ltnegi | ⊢ ( 0 < π ↔ - π < - 0 ) |
| 11 | 8 10 | mpbi | ⊢ - π < - 0 |
| 12 | neg0 | ⊢ - 0 = 0 | |
| 13 | 11 12 | breqtri | ⊢ - π < 0 |
| 14 | 5 9 4 | lttri | ⊢ ( ( - π < 0 ∧ 0 < π ) → - π < π ) |
| 15 | 13 8 14 | mp2an | ⊢ - π < π |
| 16 | ubioc1 | ⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ* ∧ - π < π ) → π ∈ ( - π (,] π ) ) | |
| 17 | 6 7 15 16 | mp3an | ⊢ π ∈ ( - π (,] π ) |
| 18 | opex | ⊢ 〈 𝑥 , ℂ 〉 ∈ V | |
| 19 | 18 2 | dmmpti | ⊢ dom +∞ei = ( - π (,] π ) |
| 20 | 17 19 | eleqtrri | ⊢ π ∈ dom +∞ei |
| 21 | fvelrn | ⊢ ( ( Fun +∞ei ∧ π ∈ dom +∞ei ) → ( +∞ei ‘ π ) ∈ ran +∞ei ) | |
| 22 | 3 20 21 | mp2an | ⊢ ( +∞ei ‘ π ) ∈ ran +∞ei |
| 23 | df-bj-minfty | ⊢ -∞ = ( +∞ei ‘ π ) | |
| 24 | df-bj-ccinfty | ⊢ ℂ∞ = ran +∞ei | |
| 25 | 22 23 24 | 3eltr4i | ⊢ -∞ ∈ ℂ∞ |
| 26 | 1 25 | sselii | ⊢ -∞ ∈ ℂ̅ |