Metamath Proof Explorer


Theorem bj-minftyccb

Description: The class minfty is an extended complex number. (Contributed by BJ, 27-Jun-2019)

Ref Expression
Assertion bj-minftyccb
|- minfty e. CCbar

Proof

Step Hyp Ref Expression
1 bj-ccinftyssccbar
 |-  CCinfty C_ CCbar
2 df-bj-inftyexpi
 |-  inftyexpi = ( x e. ( -u _pi (,] _pi ) |-> <. x , CC >. )
3 2 funmpt2
 |-  Fun inftyexpi
4 pire
 |-  _pi e. RR
5 4 renegcli
 |-  -u _pi e. RR
6 5 rexri
 |-  -u _pi e. RR*
7 4 rexri
 |-  _pi e. RR*
8 pipos
 |-  0 < _pi
9 0re
 |-  0 e. RR
10 9 4 ltnegi
 |-  ( 0 < _pi <-> -u _pi < -u 0 )
11 8 10 mpbi
 |-  -u _pi < -u 0
12 neg0
 |-  -u 0 = 0
13 11 12 breqtri
 |-  -u _pi < 0
14 5 9 4 lttri
 |-  ( ( -u _pi < 0 /\ 0 < _pi ) -> -u _pi < _pi )
15 13 8 14 mp2an
 |-  -u _pi < _pi
16 ubioc1
 |-  ( ( -u _pi e. RR* /\ _pi e. RR* /\ -u _pi < _pi ) -> _pi e. ( -u _pi (,] _pi ) )
17 6 7 15 16 mp3an
 |-  _pi e. ( -u _pi (,] _pi )
18 opex
 |-  <. x , CC >. e. _V
19 18 2 dmmpti
 |-  dom inftyexpi = ( -u _pi (,] _pi )
20 17 19 eleqtrri
 |-  _pi e. dom inftyexpi
21 fvelrn
 |-  ( ( Fun inftyexpi /\ _pi e. dom inftyexpi ) -> ( inftyexpi ` _pi ) e. ran inftyexpi )
22 3 20 21 mp2an
 |-  ( inftyexpi ` _pi ) e. ran inftyexpi
23 df-bj-minfty
 |-  minfty = ( inftyexpi ` _pi )
24 df-bj-ccinfty
 |-  CCinfty = ran inftyexpi
25 22 23 24 3eltr4i
 |-  minfty e. CCinfty
26 1 25 sselii
 |-  minfty e. CCbar