Description: The class minfty is an extended complex number. (Contributed by BJ, 27-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-minftyccb | |- minfty e. CCbar |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-ccinftyssccbar | |- CCinfty C_ CCbar |
|
2 | df-bj-inftyexpi | |- inftyexpi = ( x e. ( -u _pi (,] _pi ) |-> <. x , CC >. ) |
|
3 | 2 | funmpt2 | |- Fun inftyexpi |
4 | pire | |- _pi e. RR |
|
5 | 4 | renegcli | |- -u _pi e. RR |
6 | 5 | rexri | |- -u _pi e. RR* |
7 | 4 | rexri | |- _pi e. RR* |
8 | pipos | |- 0 < _pi |
|
9 | 0re | |- 0 e. RR |
|
10 | 9 4 | ltnegi | |- ( 0 < _pi <-> -u _pi < -u 0 ) |
11 | 8 10 | mpbi | |- -u _pi < -u 0 |
12 | neg0 | |- -u 0 = 0 |
|
13 | 11 12 | breqtri | |- -u _pi < 0 |
14 | 5 9 4 | lttri | |- ( ( -u _pi < 0 /\ 0 < _pi ) -> -u _pi < _pi ) |
15 | 13 8 14 | mp2an | |- -u _pi < _pi |
16 | ubioc1 | |- ( ( -u _pi e. RR* /\ _pi e. RR* /\ -u _pi < _pi ) -> _pi e. ( -u _pi (,] _pi ) ) |
|
17 | 6 7 15 16 | mp3an | |- _pi e. ( -u _pi (,] _pi ) |
18 | opex | |- <. x , CC >. e. _V |
|
19 | 18 2 | dmmpti | |- dom inftyexpi = ( -u _pi (,] _pi ) |
20 | 17 19 | eleqtrri | |- _pi e. dom inftyexpi |
21 | fvelrn | |- ( ( Fun inftyexpi /\ _pi e. dom inftyexpi ) -> ( inftyexpi ` _pi ) e. ran inftyexpi ) |
|
22 | 3 20 21 | mp2an | |- ( inftyexpi ` _pi ) e. ran inftyexpi |
23 | df-bj-minfty | |- minfty = ( inftyexpi ` _pi ) |
|
24 | df-bj-ccinfty | |- CCinfty = ran inftyexpi |
|
25 | 22 23 24 | 3eltr4i | |- minfty e. CCinfty |
26 | 1 25 | sselii | |- minfty e. CCbar |