Step |
Hyp |
Ref |
Expression |
1 |
|
bj-ccinftyssccbar |
|- CCinfty C_ CCbar |
2 |
|
df-bj-inftyexpi |
|- inftyexpi = ( x e. ( -u _pi (,] _pi ) |-> <. x , CC >. ) |
3 |
2
|
funmpt2 |
|- Fun inftyexpi |
4 |
|
pire |
|- _pi e. RR |
5 |
4
|
renegcli |
|- -u _pi e. RR |
6 |
5
|
rexri |
|- -u _pi e. RR* |
7 |
4
|
rexri |
|- _pi e. RR* |
8 |
|
pipos |
|- 0 < _pi |
9 |
|
0re |
|- 0 e. RR |
10 |
9 4
|
ltnegi |
|- ( 0 < _pi <-> -u _pi < -u 0 ) |
11 |
8 10
|
mpbi |
|- -u _pi < -u 0 |
12 |
|
neg0 |
|- -u 0 = 0 |
13 |
11 12
|
breqtri |
|- -u _pi < 0 |
14 |
5 9 4
|
lttri |
|- ( ( -u _pi < 0 /\ 0 < _pi ) -> -u _pi < _pi ) |
15 |
13 8 14
|
mp2an |
|- -u _pi < _pi |
16 |
|
ubioc1 |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ -u _pi < _pi ) -> _pi e. ( -u _pi (,] _pi ) ) |
17 |
6 7 15 16
|
mp3an |
|- _pi e. ( -u _pi (,] _pi ) |
18 |
|
opex |
|- <. x , CC >. e. _V |
19 |
18 2
|
dmmpti |
|- dom inftyexpi = ( -u _pi (,] _pi ) |
20 |
17 19
|
eleqtrri |
|- _pi e. dom inftyexpi |
21 |
|
fvelrn |
|- ( ( Fun inftyexpi /\ _pi e. dom inftyexpi ) -> ( inftyexpi ` _pi ) e. ran inftyexpi ) |
22 |
3 20 21
|
mp2an |
|- ( inftyexpi ` _pi ) e. ran inftyexpi |
23 |
|
df-bj-minfty |
|- minfty = ( inftyexpi ` _pi ) |
24 |
|
df-bj-ccinfty |
|- CCinfty = ran inftyexpi |
25 |
22 23 24
|
3eltr4i |
|- minfty e. CCinfty |
26 |
1 25
|
sselii |
|- minfty e. CCbar |