Metamath Proof Explorer


Theorem bj-rdg0gALT

Description: Alternate proof of rdg0g . More direct since it bypasses tz7.44-1 and rdg0 (and vtoclg , vtoclga ). (Contributed by NM, 25-Apr-1995) More direct proof. (Revised by BJ, 17-Nov-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-rdg0gALT A V rec F A = A

Proof

Step Hyp Ref Expression
1 rdgdmlim Lim dom rec F A
2 limomss Lim dom rec F A ω dom rec F A
3 1 2 ax-mp ω dom rec F A
4 peano1 ω
5 3 4 sselii dom rec F A
6 rdgvalg dom rec F A rec F A = x V if x = A if Lim dom x ran x F x dom x rec F A
7 5 6 ax-mp rec F A = x V if x = A if Lim dom x ran x F x dom x rec F A
8 res0 rec F A =
9 8 fveq2i x V if x = A if Lim dom x ran x F x dom x rec F A = x V if x = A if Lim dom x ran x F x dom x
10 eqid x V if x = A if Lim dom x ran x F x dom x = x V if x = A if Lim dom x ran x F x dom x
11 simpr A V x = x =
12 11 iftrued A V x = if x = A if Lim dom x ran x F x dom x = A
13 0ex V
14 13 a1i A V V
15 id A V A V
16 10 12 14 15 fvmptd2 A V x V if x = A if Lim dom x ran x F x dom x = A
17 9 16 eqtrid A V x V if x = A if Lim dom x ran x F x dom x rec F A = A
18 7 17 eqtrid A V rec F A = A