Metamath Proof Explorer


Theorem bj-rdg0gALT

Description: Alternate proof of rdg0g . More direct since it bypasses tz7.44-1 and rdg0 (and vtoclg , vtoclga ). (Contributed by NM, 25-Apr-1995) More direct proof. (Revised by BJ, 17-Nov-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-rdg0gALT AVrecFA=A

Proof

Step Hyp Ref Expression
1 rdgdmlim LimdomrecFA
2 limomss LimdomrecFAωdomrecFA
3 1 2 ax-mp ωdomrecFA
4 peano1 ω
5 3 4 sselii domrecFA
6 rdgvalg domrecFArecFA=xVifx=AifLimdomxranxFxdomxrecFA
7 5 6 ax-mp recFA=xVifx=AifLimdomxranxFxdomxrecFA
8 res0 recFA=
9 8 fveq2i xVifx=AifLimdomxranxFxdomxrecFA=xVifx=AifLimdomxranxFxdomx
10 eqid xVifx=AifLimdomxranxFxdomx=xVifx=AifLimdomxranxFxdomx
11 simpr AVx=x=
12 11 iftrued AVx=ifx=AifLimdomxranxFxdomx=A
13 0ex V
14 13 a1i AVV
15 id AVAV
16 10 12 14 15 fvmptd2 AVxVifx=AifLimdomxranxFxdomx=A
17 9 16 eqtrid AVxVifx=AifLimdomxranxFxdomxrecFA=A
18 7 17 eqtrid AVrecFA=A