Step |
Hyp |
Ref |
Expression |
1 |
|
rdgdmlim |
⊢ Lim dom rec ( 𝐹 , 𝐴 ) |
2 |
|
limomss |
⊢ ( Lim dom rec ( 𝐹 , 𝐴 ) → ω ⊆ dom rec ( 𝐹 , 𝐴 ) ) |
3 |
1 2
|
ax-mp |
⊢ ω ⊆ dom rec ( 𝐹 , 𝐴 ) |
4 |
|
peano1 |
⊢ ∅ ∈ ω |
5 |
3 4
|
sselii |
⊢ ∅ ∈ dom rec ( 𝐹 , 𝐴 ) |
6 |
|
rdgvalg |
⊢ ( ∅ ∈ dom rec ( 𝐹 , 𝐴 ) → ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = ( ( 𝑥 ∈ V ↦ if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐹 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) ) ‘ ( rec ( 𝐹 , 𝐴 ) ↾ ∅ ) ) ) |
7 |
5 6
|
ax-mp |
⊢ ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = ( ( 𝑥 ∈ V ↦ if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐹 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) ) ‘ ( rec ( 𝐹 , 𝐴 ) ↾ ∅ ) ) |
8 |
|
res0 |
⊢ ( rec ( 𝐹 , 𝐴 ) ↾ ∅ ) = ∅ |
9 |
8
|
fveq2i |
⊢ ( ( 𝑥 ∈ V ↦ if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐹 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) ) ‘ ( rec ( 𝐹 , 𝐴 ) ↾ ∅ ) ) = ( ( 𝑥 ∈ V ↦ if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐹 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) ) ‘ ∅ ) |
10 |
|
eqid |
⊢ ( 𝑥 ∈ V ↦ if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐹 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) ) = ( 𝑥 ∈ V ↦ if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐹 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) ) |
11 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 = ∅ ) → 𝑥 = ∅ ) |
12 |
11
|
iftrued |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 = ∅ ) → if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐹 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) = 𝐴 ) |
13 |
|
0ex |
⊢ ∅ ∈ V |
14 |
13
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → ∅ ∈ V ) |
15 |
|
id |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉 ) |
16 |
10 12 14 15
|
fvmptd2 |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ V ↦ if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐹 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) ) ‘ ∅ ) = 𝐴 ) |
17 |
9 16
|
syl5eq |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ V ↦ if ( 𝑥 = ∅ , 𝐴 , if ( Lim dom 𝑥 , ∪ ran 𝑥 , ( 𝐹 ‘ ( 𝑥 ‘ ∪ dom 𝑥 ) ) ) ) ) ‘ ( rec ( 𝐹 , 𝐴 ) ↾ ∅ ) ) = 𝐴 ) |
18 |
7 17
|
syl5eq |
⊢ ( 𝐴 ∈ 𝑉 → ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = 𝐴 ) |