Step |
Hyp |
Ref |
Expression |
1 |
|
rdgdmlim |
|- Lim dom rec ( F , A ) |
2 |
|
limomss |
|- ( Lim dom rec ( F , A ) -> _om C_ dom rec ( F , A ) ) |
3 |
1 2
|
ax-mp |
|- _om C_ dom rec ( F , A ) |
4 |
|
peano1 |
|- (/) e. _om |
5 |
3 4
|
sselii |
|- (/) e. dom rec ( F , A ) |
6 |
|
rdgvalg |
|- ( (/) e. dom rec ( F , A ) -> ( rec ( F , A ) ` (/) ) = ( ( x e. _V |-> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( F ` ( x ` U. dom x ) ) ) ) ) ` ( rec ( F , A ) |` (/) ) ) ) |
7 |
5 6
|
ax-mp |
|- ( rec ( F , A ) ` (/) ) = ( ( x e. _V |-> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( F ` ( x ` U. dom x ) ) ) ) ) ` ( rec ( F , A ) |` (/) ) ) |
8 |
|
res0 |
|- ( rec ( F , A ) |` (/) ) = (/) |
9 |
8
|
fveq2i |
|- ( ( x e. _V |-> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( F ` ( x ` U. dom x ) ) ) ) ) ` ( rec ( F , A ) |` (/) ) ) = ( ( x e. _V |-> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( F ` ( x ` U. dom x ) ) ) ) ) ` (/) ) |
10 |
|
eqid |
|- ( x e. _V |-> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( F ` ( x ` U. dom x ) ) ) ) ) = ( x e. _V |-> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( F ` ( x ` U. dom x ) ) ) ) ) |
11 |
|
simpr |
|- ( ( A e. V /\ x = (/) ) -> x = (/) ) |
12 |
11
|
iftrued |
|- ( ( A e. V /\ x = (/) ) -> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( F ` ( x ` U. dom x ) ) ) ) = A ) |
13 |
|
0ex |
|- (/) e. _V |
14 |
13
|
a1i |
|- ( A e. V -> (/) e. _V ) |
15 |
|
id |
|- ( A e. V -> A e. V ) |
16 |
10 12 14 15
|
fvmptd2 |
|- ( A e. V -> ( ( x e. _V |-> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( F ` ( x ` U. dom x ) ) ) ) ) ` (/) ) = A ) |
17 |
9 16
|
syl5eq |
|- ( A e. V -> ( ( x e. _V |-> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( F ` ( x ` U. dom x ) ) ) ) ) ` ( rec ( F , A ) |` (/) ) ) = A ) |
18 |
7 17
|
syl5eq |
|- ( A e. V -> ( rec ( F , A ) ` (/) ) = A ) |